You limited your search to:

  Partner: UNT Libraries
 Department: Department of Physics
 Collection: UNT Theses and Dissertations
Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Date: May 2000
Creator: Guo, Baonian
Description: Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and thereby produce what is called a "soft" error, or Single Event Upset (SEU). Therefore, the response of ICs to natural radiation is of great concern for the reliability of future devices. Immunity to soft errors is listed as a requirement in the 1997 National Technology Roadmap for Semiconductors prepared by the Semiconductor Industry Association in the United States. To design more robust devices, it is essential to create and test accurate models of induced charge collection and transport in semiconductor devices. A heavy ion microbeam produced by an accelerator is an ideal tool to study charge collection processes in ICs and to locate the weak nodes and structures for improvement through hardening design. In this dissertation, the Ion Beam Induced Charge Collection ...
Contributing Partner: UNT Libraries
Charge State Dependence of L-Shell X-Ray Production Cross Sections of ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Energetic Oxygen Ions

Charge State Dependence of L-Shell X-Ray Production Cross Sections of ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Energetic Oxygen Ions

Date: August 1996
Creator: Azordegan, Amir R. (Amir Reza)
Description: Charge state dependence of L-shell x-ray production cross sections have been measured for 4-14 MeV ¹⁶O^q (q=3⁺-8⁺) ions incident on ultra-clean, ultra-thin copper, and for 12 MeV ¹⁶O^q (q=3⁺-8⁺) on nickel, zinc, gallium and germanium solid foils. L-shell x-ray production cross section were measured using target foils of thickness ≤0.6 μg/cm² evaporated onto 5 μg/cm² carbon backings. Oxygen ions at MeV energies and charge state q were produced using a 3MV 9SDH-2 National Electrostatics Corporation tandem Pelletron accelerator. Different charge states, with and without K-vacancies, were produced using a post acceleration nitrogen striping gas cell or ¹²C stripping foils. L-shell x-rays from ultra-thin ₂₈Ni, ₂₉Cu,₃₀Zn,₃₁Ga, and ₃₂Ge targets were measured using a Si(Li) x-ray detector with a FWHM resolution of 135 eV at 5.9 keV. The scattered projectiles were detected simultaneously by means of silicon surface barrier detectors at angle of 45° and 169° with respect to the beam direction. The electron capture (EC) as well as direct ionization (DI) contributions were determined from the projectile charge state dependence of the target x-ray production cross sections under single collision conditions. The present work was undertaken to expand the measurements of L-shell x-ray production cross sections upon selected elements with low ...
Contributing Partner: UNT Libraries
Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

Date: August 1994
Creator: Sun, Hsueh-Li
Description: The charge state dependence of M-shell x-ray production cross sections of 67HO bombarded by 2-12 MeV carbon ions with and without K-vacancies are reported. The experiment was performed using an NEC 9SDH-2 tandem accelerator at the Ion Beam Modification and Analysis Laboratory of the University of North Texas. The high charge state carbon ions were produced by a post-accelerator stripping gas cell. Ultra-clean holmium targets were used in ion-atom collision to generate M-shell x rays at energies from 1.05 to 1.58 keV. The x-ray measurements were made with a windowless Si(Li) x-ray detector that was calibrated using radiative sources, particle induced x-ray emission (PIXE), and the atomic field bremsstrahlung (AFB) techniques.
Contributing Partner: UNT Libraries
Charge State Distributions in Molecular Dissociation

Charge State Distributions in Molecular Dissociation

Date: December 1998
Creator: Renfrow, Steven N. (Steven Neal)
Description: The present work provides charge state fractions that may be used to generate TEAMS relative sensitivity factors for impurities in semiconductor materials.
Contributing Partner: UNT Libraries
Coherent Resonant Interaction and Harmonic Generation in Atomic Vapors

Coherent Resonant Interaction and Harmonic Generation in Atomic Vapors

Date: August 1987
Creator: Mukherjee, Nandini
Description: This work examines the use of higher order multiphoton resonances in higher harmonic generation together with judicious exploitation of coherent interaction properties to achieve efficient harmonic generation. A detailed experimental study on third harmonic generation in two photon resonant coherent interaction and a theoretical study on four photon resonant coherent interaction have been conducted. Two photon resonant coheren propagation in lithium vapor (2S-4S and 2S-3D interaction) has been studied in detail as a function of phase and delay of the interacting pulse sequence. Under coherent lossless propagation of 90 phase shifted pulse pair, third harmonic generation is enhanced. A maximum energy conversion efficiency of 1% was measured experimentally. This experiment shows that phase correlated pulse sequence can be used to control multiphoton coherent resonant effects. A larger two photon resonant enhancement does not result in more efficient harmonic generation, in agreement with the theoretical prediction. An accurate (to at least 0.5 A°) measurement of intensity dependent Stark shift has been done with the newly developed "interferometric wavemeter." Stark shifts as big as several pulse bandwidths (of picosecond pulses) result in a poor tuning of multiphoton resonance and become a limiting factor of resonant harmonic generation. A complete theory has been ...
Contributing Partner: UNT Libraries
Complex Numbers in Quantum Theory

Complex Numbers in Quantum Theory

Date: August 2015
Creator: Maynard, Glenn
Description: In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with Ehrenfest, wrote the following about the new theory: “What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real function.” This seemingly simple issue remains unexplained almost ninety years later. In this dissertation I elucidate the physical and theoretical origins of the complex requirement. I identify a freedom/constraint situation encountered by vectors when, employed in accordance with adopted quantum representational methodology, and representing angular momentum states in particular. Complex vectors, quite simply, provide more available adjustable variables than do real vectors. The additional variables relax the constraint situation allowing the theory’s representational program to carry through. This complex number issue, which lies at the deepest foundations of the theory, has implications for important issues located higher in the theory. For example, any unification of the classical and quantum accounts of the settled order of nature, will rest squarely on our ability to account for the introduction of the imaginary unit.
Contributing Partner: UNT Libraries
Complexity as a Form of Transition From Dynamics to Thermodynamics: Application to Sociological and Biological Processes.

Complexity as a Form of Transition From Dynamics to Thermodynamics: Application to Sociological and Biological Processes.

Date: May 2003
Creator: Ignaccolo, Massimiliano
Description: This dissertation addresses the delicate problem of establishing the statistical mechanical foundation of complex processes. These processes are characterized by a delicate balance of randomness and order, and a correct paradigm for them seems to be the concept of sporadic randomness. First of all, we have studied if it is possible to establish a foundation of these processes on the basis of a generalized version of thermodynamics, of non-extensive nature. A detailed account of this attempt is reported in Ignaccolo and Grigolini (2001), which shows that this approach leads to inconsistencies. It is shown that there is no need to generalize the Kolmogorov-Sinai entropy by means of a non-extensive indicator, and that the anomaly of these processes does not rest on their non-extensive nature, but rather in the fact that the process of transition from dynamics to thermodynamics, this being still extensive, occurs in an exceptionally extended time scale. Even, when the invariant distribution exists, the time necessary to reach the thermodynamic scaling regime is infinite. In the case where no invariant distribution exists, the complex system lives forever in a condition intermediate between dynamics and thermodynamics. This discovery has made it possible to create a new method of analysis ...
Contributing Partner: UNT Libraries
Complexity as Aging Non-Poisson Renewal Processes

Complexity as Aging Non-Poisson Renewal Processes

Date: May 2007
Creator: Bianco, Simone
Description: The search for a satisfactory model for complexity, meant as an intermediate condition between total order and total disorder, is still subject of debate in the scientific community. In this dissertation the emergence of non-Poisson renewal processes in several complex systems is investigated. After reviewing the basics of renewal theory, another popular approach to complexity, called modulation, is introduced. I show how these two different approaches, given a suitable choice of the parameter involved, can generate the same macroscopic outcome, namely an inverse power law distribution density of events occurrence. To solve this ambiguity, a numerical instrument, based on the theoretical analysis of the aging properties of renewal systems, is introduced. The application of this method, called renewal aging experiment, allows us to distinguish if a time series has been generated by a renewal or a modulation process. This method of analysis is then applied to several physical systems, from blinking quantum dots, to the human brain activity, to seismic fluctuations. Theoretical conclusions about the underlying nature of the considered complex systems are drawn.
Contributing Partner: UNT Libraries
A Comprehensive Model for the Rotational Spectra of Propyne CH₃CCH in the Ground and V₁₀=1,2,3,4,5 Vibrational States

A Comprehensive Model for the Rotational Spectra of Propyne CH₃CCH in the Ground and V₁₀=1,2,3,4,5 Vibrational States

Date: December 1986
Creator: Rhee, Won Myung
Description: The energy states of C₃ᵥ symmetric top polyatomic molecules were studied. Both classical and quantum mechanical methods have been used to introduce the energy states of polyatomic molecules. Also, it is shown that the vibration-rotation spectra of polyatomic molecules in the ground and excited vibrational states can be predicted by group theory. A comprehensive model for predicting rotational frequency components in various v₁₀ vibrational levels of propyne was developed by using perturbation theory and those results were compared with other formulas for C₃ᵥ symmetric top molecules. The v₁₀=1,2,3 and ground rotational spectra of propyne in the frequency range 17-70 GHz have been reassigned by using the derived comprehensive model. The v₁₀=3 and v₁₀=4 rotational spectra of propyne have been investigated in the 70 GHz, and 17 to 52 GHz regions, respectively, and these spectral components assigned using the comprehensive model. Molecular constants for these vibrationally excited states have been determined from more than 100 observed rotational transitions. From these experimentally observed components and a model based upon first principles for C₃ᵥ symmetry molecules, rotational constants have been expressed in a form which enables one to predict rotational components for vibrational levels for propyne up to v₁₀=5. This comprehensive model also ...
Contributing Partner: UNT Libraries
Computational Studies of Selected Ruthenium Catalysis Reactions.

Computational Studies of Selected Ruthenium Catalysis Reactions.

Date: December 2007
Creator: Barakat, Khaldoon A.
Description: Computational techniques were employed to investigate pathways that would improve the properties and characteristics of transition metal (i.e., ruthenium) catalysts, and to explore their mechanisms. The studied catalytic pathways are particularly relevant to catalytic hydroarylation of olefins. These processes involved the +2 to +3 oxidation of ruthenium and its effect on ruthenium-carbon bond strengths, carbon-hydrogen bond activation by 1,2-addition/reductive elimination pathways appropriate to catalytic hydrogen/deuterium exchange, and the possible intermediacy of highly coordinatively unsaturated (e.g., 14-electron) ruthenium complexes in catalysis. The calculations indicate a significant decrease in the Ru-CH3 homolytic bond dissociation enthalpy for the oxidation of TpRu(CO)(NCMe)(Me) to its RuIII cation through both reactant destabilization and product stabilization. This oxidation can thus lead to the olefin polymerization observed by Gunnoe and coworkers, since weak RuIII-C bonds would afford quick access to alkyl radical species. Calculations support the experimental proposal of a mechanism for catalytic hydrogen/deuterium exchange by a RuII-OH catalyst. Furthermore, calculational investigations reveal a probable pathway for the activation of C-H bonds that involves phosphine loss, 1,2-addition to the Ru-OH bond and then reversal of these steps with deuterium to incorporate it into the substrate. The presented results offer the indication for the net addition of aromatic C-H ...
Contributing Partner: UNT Libraries