You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Computer Science
CLUE: A Cluster Evaluation Tool

CLUE: A Cluster Evaluation Tool

Date: December 2006
Creator: Parker, Brandon S.
Description: Modern high performance computing is dependent on parallel processing systems. Most current benchmarks reveal only the high level computational throughput metrics, which may be sufficient for single processor systems, but can lead to a misrepresentation of true system capability for parallel systems. A new benchmark is therefore proposed. CLUE (Cluster Evaluator) uses a cellular automata algorithm to evaluate the scalability of parallel processing machines. The benchmark also uses algorithmic variations to evaluate individual system components' impact on the overall serial fraction and efficiency. CLUE is not a replacement for other performance-centric benchmarks, but rather shows the scalability of a system and provides metrics to reveal where one can improve overall performance. CLUE is a new benchmark which demonstrates a better comparison among different parallel systems than existing benchmarks and can diagnose where a particular parallel system can be optimized.
Contributing Partner: UNT Libraries
A Comparative Analysis of Guided vs. Query-Based Intelligent Tutoring Systems (ITS) Using a Class-Entity-Relationship-Attribute (CERA) Knowledge Base

A Comparative Analysis of Guided vs. Query-Based Intelligent Tutoring Systems (ITS) Using a Class-Entity-Relationship-Attribute (CERA) Knowledge Base

Date: August 1987
Creator: Hall, Douglas Lee
Description: One of the greatest problems facing researchers in the sub field of Artificial Intelligence known as Intelligent Tutoring Systems (ITS) is the selection of a knowledge base designs that will facilitate the modification of the knowledge base. The Class-Entity-Relationship-Attribute (CERA), proposed by R. P. Brazile, holds certain promise as a more generic knowledge base design framework upon which can be built robust and efficient ITS. This study has a twofold purpose. The first is to demonstrate that a CERA knowledge base can be constructed for an ITS on a subset of the domain of Cretaceous paleontology and function as the "expert module" of the ITS. The second is to test the validity of the ideas that students guided through a lesson learn more factual knowledge, while those who explore the knowledge base that underlies the lesson through query at their own pace will be able to formulate their own integrative knowledge from the knowledge gained in their explorations and spend more time on the system. This study concludes that a CERA-based system can be constructed as an effective teaching tool. However, while an ITS - treatment provides for statistically significant gains in achievement test scores, the type of treatment seems ...
Contributing Partner: UNT Libraries
A Comparison of Agent-Oriented Software Engineering Frameworks and Methodologies

A Comparison of Agent-Oriented Software Engineering Frameworks and Methodologies

Date: December 2003
Creator: Lin, Chia-En
Description: Agent-oriented software engineering (AOSE) covers issues on developing systems with software agents. There are many techniques, mostly agent-oriented and object-oriented, ready to be chosen as building blocks to create agent-based systems. There have been several AOSE methodologies proposed intending to show engineers guidelines on how these elements are constituted in having agents achieve the overall system goals. Although these solutions are promising, most of them are designed in ad-hoc manner without truly obeying software developing life-cycle fully, as well as lacking of examinations on agent-oriented features. To address these issues, we investigated state-of-the-art techniques and AOSE methodologies. By examining them in different respects, we commented on the strength and weakness of them. Toward a formal study, a comparison framework has been set up regarding four aspects, including concepts and properties, notations and modeling techniques, process, and pragmatics. Under these criteria, we conducted the comparison in both overview and detailed level. The comparison helped us with empirical and analytical study, to inspect the issues on how an ideal agent-based system will be formed.
Contributing Partner: UNT Libraries
Computational Complexity of Hopfield Networks

Computational Complexity of Hopfield Networks

Date: August 1998
Creator: Tseng, Hung-Li
Description: There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network.
Contributing Partner: UNT Libraries
Computational Epidemiology - Analyzing Exposure Risk: A Deterministic, Agent-Based Approach

Computational Epidemiology - Analyzing Exposure Risk: A Deterministic, Agent-Based Approach

Date: August 2009
Creator: O'Neill II, Martin Joseph
Description: Many infectious diseases are spread through interactions between susceptible and infectious individuals. Keeping track of where each exposure to the disease took place, when it took place, and which individuals were involved in the exposure can give public health officials important information that they may use to formulate their interventions. Further, knowing which individuals in the population are at the highest risk of becoming infected with the disease may prove to be a useful tool for public health officials trying to curtail the spread of the disease. Epidemiological models are needed to allow epidemiologists to study the population dynamics of transmission of infectious agents and the potential impact of infectious disease control programs. While many agent-based computational epidemiological models exist in the literature, they focus on the spread of disease rather than exposure risk. These models are designed to simulate very large populations, representing individuals as agents, and using random experiments and probabilities in an attempt to more realistically guide the course of the modeled disease outbreak. The work presented in this thesis focuses on tracking exposure risk to chickenpox in an elementary school setting. This setting is chosen due to the high level of detailed information realistically available to ...
Contributing Partner: UNT Libraries
Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Date: August 2015
Creator: Liang, Yiheng
Description: Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of ...
Contributing Partner: UNT Libraries
Computational Methods for Vulnerability Analysis and Resource Allocation in Public Health Emergencies

Computational Methods for Vulnerability Analysis and Resource Allocation in Public Health Emergencies

Date: August 2015
Creator: Indrakanti, Saratchandra
Description: POD (Point of Dispensing)-based emergency response plans involving mass prophylaxis may seem feasible when considering the choice of dispensing points within a region, overall population density, and estimated traffic demands. However, the plan may fail to serve particular vulnerable sub-populations, resulting in access disparities during emergency response. Federal authorities emphasize on the need to identify sub-populations that cannot avail regular services during an emergency due to their special needs to ensure effective response. Vulnerable individuals require the targeted allocation of appropriate resources to serve their special needs. Devising schemes to address the needs of vulnerable sub-populations is essential for the effectiveness of response plans. This research focuses on data-driven computational methods to quantify and address vulnerabilities in response plans that require the allocation of targeted resources. Data-driven methods to identify and quantify vulnerabilities in response plans are developed as part of this research. Addressing vulnerabilities requires the targeted allocation of appropriate resources to PODs. The problem of resource allocation to PODs during public health emergencies is introduced and the variants of the resource allocation problem such as the spatial allocation, spatio-temporal allocation and optimal resource subset variants are formulated. Generating optimal resource allocation and scheduling solutions can be computationally hard ...
Contributing Partner: UNT Libraries
Computer Realization of Human Music Cognition

Computer Realization of Human Music Cognition

Date: August 1988
Creator: Albright, Larry E. (Larry Eugene)
Description: This study models the human process of music cognition on the digital computer. The definition of music cognition is derived from the work in music cognition done by the researchers Carol Krumhansl and Edward Kessler, and by Mari Jones, as well as from the music theories of Heinrich Schenker. The computer implementation functions in three stages. First, it translates a musical "performance" in the form of MIDI (Musical Instrument Digital Interface) messages into LISP structures. Second, the various parameters of the performance are examined separately a la Jones's joint accent structure, quantified according to psychological findings, and adjusted to a common scale. The findings of Krumhansl and Kessler are used to evaluate the consonance of each note with respect to the key of the piece and with respect to the immediately sounding harmony. This process yields a multidimensional set of points, each of which is a cognitive evaluation of a single musical event within the context of the piece of music within which it occurred. This set of points forms a metric space in multi-dimensional Euclidean space. The third phase of the analysis maps the set of points into a topology-preserving data structure for a Schenkerian-like middleground structural analysis. This ...
Contributing Partner: UNT Libraries
Content-Based Image Retrieval by Integration of Metadata Encoded Multimedia Features in Constructing a Video Summarizer Application.

Content-Based Image Retrieval by Integration of Metadata Encoded Multimedia Features in Constructing a Video Summarizer Application.

Date: May 2003
Creator: Anusuri, Ramprasad
Description: Content-based image retrieval (CBIR) is the retrieval of images from a collection by means of internal feature measures of the information content of the images. In CBIR systems, text media is usually used only to retrieve exemplar images for further searching by image feature content. This research work describes a new method for integrating multimedia text and image content features to increase the retrieval performance of the system. I am exploring the content-based features of an image extracted from a video to build a storyboard for search retrieval of images. Metadata encoded multimedia features include extracting primitive features like color, shape and text from an image. Histograms are built for all the features extracted and stored in a database. Images are searched based on comparing these histogram values of the extracted image with the stored values. These histogram values are used for extraction of keyframes from a collection of images parsed from a video file. Individual shots of images are extracted from a video clip and run through processes that extract the features and build the histogram values. A keyframe extraction algorithm is run to get the keyframes from the collection of images to build a storyboard of images. In ...
Contributing Partner: UNT Libraries
Control Mechanisms and Recovery Techniques for Real-Time Data Transmission Over the Internet.

Control Mechanisms and Recovery Techniques for Real-Time Data Transmission Over the Internet.

Date: August 2002
Creator: Battula, Venkata Krishna Rao
Description: Streaming multimedia content with UDP has become popular over distributed systems such as an Internet. This may encounter many losses due to dropped packets or late arrivals at destination since UDP can only provide best effort delivery. Even UDP doesn't have any self-recovery mechanism from congestion collapse or bursty loss to inform sender of the data to adjust future transmission rate of data like in TCP. So there is a need to incorporate various control schemes like forward error control, interleaving, and congestion control and error concealment into real-time transmission to prevent from effect of losses. Loss can be repaired by retransmission if roundtrip delay is allowed, otherwise error concealment techniques will be used based on the type and amount of loss. This paper implements the interleaving technique with packet spacing of varying interleaver block size for protecting real-time data from loss and its effect during transformation across the Internet. The packets are interleaved and maintain some time gap between two consecutive packets before being transmitted into the Internet. Thus loss of packets can be reduced from congestion and preventing loss of consecutive packets of information when a burst of several packets are lost. Several experiments have been conducted with ...
Contributing Partner: UNT Libraries