## You limited your search to:

**Partner:**UNT Libraries

**Department:**Department of Mathematics

**Decade:**2010-2019

**Collection:**UNT Theses and Dissertations

### Algebraically Determined Rings of Functions

**Date:**August 2010

**Creator:**McLinden, Alexander Patrick

**Description:**Let R be any of the following rings: the smooth functions on R^2n with the Poisson bracket, the Hamiltonian vector fields on a symplectic manifold, the Lie algebra of smooth complex vector fields on C, or a variety of rings of functions (real or complex valued) over 2nd countable spaces. Then if H is any other Polish ring and φ:H →R is an algebraic isomorphism, then it is also a topological isomorphism (i.e. a homeomorphism). Moreover, many such isomorphisms between function rings induce a homeomorphism of the underlying spaces. It is also shown that there is no topology in which the ring of real analytic functions on R is a Polish ring.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc31543/

### Algebraically Determined Semidirect Products

**Date:**May 2011

**Creator:**Jasim, We'am Muhammad

**Description:**Let G be a Polish group. We say that G is an algebraically determined Polish group if given any Polish group L and any algebraic isomorphism from L to G, then the algebraic isomorphism is a topological isomorphism. We will prove a general theorem that gives useful sufficient conditions for a semidirect product of two Polish groups to be algebraically determined. This will smooth the way for the proofs for some special groups. For example, let H be a separable Hilbert space and let G be a subset of the unitary group U(H) acting transitively on the unit sphere. Assume that -I in G and G is a Polish topological group in some topology such that H x G to H, (x,U) to U(x) is continuous, then H x G is a Polish topological group. Hence H x G is an algebraically determined Polish group. In addition, we apply the above the above result on the unitary group U(A) of a separable irreducible C*-algebra A with identity acting transitively on the unit sphere in a separable Hilbert space H and proved that the natural semidirect product H x U(A) is an algebraically determined Polish group. A similar theorem is true ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc67993/

### Descriptive Set Theory and Measure Theory in Locally Compact and Non-locally Compact Groups

**Date:**May 2013

**Creator:**Cohen, Michael Patrick

**Description:**In this thesis we study descriptive-set-theoretic and measure-theoretic properties of Polish groups, with a thematic emphasis on the contrast between groups which are locally compact and those which are not. The work is divided into three major sections. In the first, working jointly with Robert Kallman, we resolve a conjecture of Gleason regarding the Polish topologization of abstract groups of homeomorphisms. We show that Gleason's conjecture is false, and its conclusion is only true when the hypotheses are considerably strengthened. Along the way we discover a new automatic continuity result for a class of functions which behave like but are distinct from functions of Baire class 1. In the second section we consider the descriptive complexity of those subsets of the permutation group S? which arise naturally from the classical Levy-Steinitz series rearrangement theorem. We show that for any conditionally convergent series of vectors in Euclidean space, the sets of permutations which make the series diverge, and diverge properly, are ?03-complete. In the last section we study the phenomenon of Haar null sets a la Christensen, and the closely related notion of openly Haar null sets. We identify and correct a minor error in the proof of Mycielski that a ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271792/

### Determinacy-related Consequences on Limit Superiors

**Date:**May 2013

**Creator:**Walker, Daniel

**Description:**Laczkovich proved from ZF that, given a countable sequence of Borel sets on a perfect Polish space, if the limit superior along every subsequence was uncountable, then there was a particular subsequence whose intersection actually contained a perfect subset. Komjath later expanded the result to hold for analytic sets. In this paper, by adding AD and sometimes V=L(R) to our assumptions, we will extend the result further. This generalization will include the increasing of the length of the sequence to certain uncountable regular cardinals as well as removing any descriptive requirements on the sets.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271913/

### Equivalence Classes of Subquotients of Pseudodifferential Operator Modules on the Line

**Date:**August 2012

**Creator:**Larsen, Jeannette M.

**Description:**Certain subquotients of Vec(R)-modules of pseudodifferential operators from one tensor density module to another are categorized, giving necessary and sufficient conditions under which two such subquotients are equivalent as Vec(R)-representations. These subquotients split under the projective subalgebra, a copy of ????2, when the members of their composition series have distinct Casimir eigenvalues. Results were obtained using the explicit description of the action of Vec(R) with respect to this splitting. In the length five case, the equivalence classes of the subquotients are determined by two invariants. In an appropriate coordinate system, the level curves of one of these invariants are a pencil of conics, and those of the other are a pencil of cubics.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc149627/

### Gibbs/Equilibrium Measures for Functions of Multidimensional Shifts with Countable Alphabets

**Date:**May 2011

**Creator:**Muir, Stephen R.

**Description:**Consider a multidimensional shift space with a countably infinite alphabet, which serves in mathematical physics as a classical lattice gas or lattice spin system. A new definition of a Gibbs measure is introduced for suitable real-valued functions of the configuration space, which play the physical role of specific internal energy. The variational principle is proved for a large class of functions, and then a more restrictive modulus of continuity condition is provided that guarantees a function's Gibbs measures to be a nonempty, weakly compact, convex set of measures that coincides with the set of measures obeying a form of the DLR equations (which has been adapted so as to be stated entirely in terms of specific internal energy instead of the Hamiltonians for an interaction potential). The variational equilibrium measures for a such a function are then characterized as the shift invariant Gibbs measures of finite entropy, and a condition is provided to determine if a function's Gibbs measures have infinite entropy or not. Moreover the spatially averaged limiting Gibbs measures, i.e. constructive equilibria, are shown to exist and their weakly closed convex hull is shown to coincide with the set of true variational equilibrium measures. It follows that the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc68021/

### Graev Metrics and Isometry Groups of Polish Ultrametric Spaces

**Date:**May 2013

**Creator:**Shi, Xiaohui

**Description:**This dissertation presents results about computations of Graev metrics on free groups and characterizes isometry groups of countable noncompact Heine-Borel Polish ultrametric spaces. In Chapter 2, computations of Graev metrics are performed on free groups. One of the related results answers an open question of Van Den Dries and Gao. In Chapter 3, isometry groups of countable noncompact Heine-Borel Polish ultrametric spaces are characterized. The notion of generalized tree is defined and a correspondence between the isomorphism group of a generalized tree and the isometry group of a Heine-Borel Polish ultrametric space is established. The concept of a weak inverse limit is introduced to capture the characterization of isomorphism groups of generalized trees. In Chapter 4, partial results of isometry groups of uncountable compact ultrametric spaces are given. It turns out that every compact ultrametric space has a unique countable orbital decomposition. An orbital space consists of disjoint orbits. An orbit subspace of an orbital space is actually a compact homogeneous ultrametric subspace.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271898/

### Hochschild Cohomology and Complex Reflection Groups

**Date:**August 2012

**Creator:**Foster-Greenwood, Briana A.

**Description:**A concrete description of Hochschild cohomology is the first step toward exploring associative deformations of algebras. In this dissertation, deformation theory, geometry, combinatorics, invariant theory, representation theory, and homological algebra merge in an investigation of Hochschild cohomology of skew group algebras arising from complex reflection groups. Given a linear action of a finite group on a finite dimensional vector space, the skew group algebra under consideration is the semi-direct product of the group with a polynomial ring on the vector space. Each representation of a group defines a different skew group algebra, which may have its own interesting deformations. In this work, we explicitly describe all graded Hecke algebras arising as deformations of the skew group algebra of any finite group acting by the regular representation. We then focus on rank two exceptional complex reflection groups acting by any irreducible representation. We consider in-depth the reflection representation and a nonfaithful rotation representation. Alongside our study of cohomology for the rotation representation, we develop techniques valid for arbitrary finite groups acting by a representation with a central kernel. Additionally, we consider combinatorial questions about reflection length and codimension orderings on complex reflection groups. We give algorithms using character theory to compute ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc149591/

### Kleinian Groups in Hilbert Spaces

**Date:**August 2012

**Creator:**Das, Tushar

**Description:**The theory of discrete groups acting on finite dimensional Euclidean open balls by hyperbolic isometries was borne around the end of 19th century within the works of Fuchs, Klein and Poincaré. We develop the theory of discrete groups acting by hyperbolic isometries on the open unit ball of an infinite dimensional separable Hilbert space. We present our investigations on the geometry of limit sets at the sphere at infinity with an attempt to highlight the differences between the finite and infinite dimensional theories. We discuss the existence of fixed points of isometries and the classification of isometries. Various notions of discreteness that were equivalent in finite dimensions, no longer turn out to be in our setting. In this regard, the robust notion of strong discreteness is introduced and we study limit sets for properly discontinuous actions. We go on to prove a generalization of the Bishop-Jones formula for strongly discrete groups, equating the Hausdorff dimension of the radial limit set with the Poincaré exponent of the group. We end with a short discussion on conformal measures and their relation with Hausdorff and packing measures on the limit set.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc149579/

### Mycielski-Regular Measures

**Date:**August 2011

**Creator:**Bass, Jeremiah Joseph

**Description:**Let μ be a Radon probability measure on M, the d-dimensional Real Euclidean space (where d is a positive integer), and f a measurable function. Let P be the space of sequences whose coordinates are elements in M. Then, for any point x in M, define a function ƒn on M and P that looks at the first n terms of an element of P and evaluates f at the first of those n terms that minimizes the distance to x in M. The measures for which such sequences converge in measure to f for almost every sequence are called Mycielski-regular. We show that the self-similar measure generated by a finite family of contracting similitudes and which up to a constant is the Hausdorff measure in its dimension on an invariant set C is Mycielski-regular.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc84171/