You limited your search to:

  Partner: UNT Libraries
 Department: Department of Chemistry
 Degree Discipline: Chemistry-Inorganic Chemistry
 Collection: UNT Theses and Dissertations
Computational Investigation of Molecular Optoelectronic and Biological Systems

Computational Investigation of Molecular Optoelectronic and Biological Systems

Date: August 2011
Creator: Tekarli, Sammer M.
Description: The scope of work in this dissertation has comprised several major investigations on applications and theoretical studies of ab initio quantum mechanics and density functional theory where those techniques were applied to the following: (i) investigation of the performance of density functionals for the computations of molecular properties of 3d transition metal containing systems; (ii) guidance for experimental groups for rational design of macrometallocyclic multinuclear complexes with superior π-acidity and π-basicity that are most suitable for p- and n-type semiconductors of metal-organic molecules and nanomaterials; (iii) investigation of the metallo-aromaticity of multi-nuclear metal complexes; (iv) investigation of the kinetics and thermodynamics of copper-mediated nitrene insertion into C-H and H-H bond; and (v) accurate computations of dissociation energies of hydrogen-bonded DNA duplex moieties utilizing the resolution of identity correlation consistent composite approach (RI-ccCA).
Contributing Partner: UNT Libraries
Modeling Transition Metal Chemistry for Catalytic Functionalization of Molecules

Modeling Transition Metal Chemistry for Catalytic Functionalization of Molecules

Date: August 2011
Creator: Morello, Glenn
Description: The diversity of transition metal complexes allows for a wide range of chemical processes to be mediated by the metal, from catalysis to surface chemistry. Investigations into the structure and electronic configuration of transition metal complexes allow for tuning of desired species by modifications to the ligands and/or metals to achieve more efficient thermodynamics and kinetics for the process of interest. Transition metals, often used in catalysts for a number of important processes, require detailed descriptions of intermediates, transition states and products to fully characterize a reaction mechanism(s) in order to design more active and efficient catalysts. Computational investigations into inorganic catalysts are explored with the aim of understanding the activity of each species and how modifications of supporting ligands, co-ligands and metals vary the interaction along the reaction pathway. Reported results give important insight into the development of the most active complexes in addition to determining the least active complexes to aid experimental development. This report first investigates the mechanisms of two unique transfer reactions: 1) formation of low coordinate nickel-nitrene ((P~P)Ni=NR; P~P = 1,2-bis(dihydrophosphino)-ethane or 1,2-bis(difluoromethylphosphino)-ethane) complexes as catalysts for nitrogen atom transfer and 2) oxidation of a triphosphorus niobium complex, [(η2-P3SnPh3)Nb(OMe)3], for the transfer of the phosphorus ...
Contributing Partner: UNT Libraries
Water-soluble Phosphors for Hypoxia Detection in Chemical and Biological Media

Water-soluble Phosphors for Hypoxia Detection in Chemical and Biological Media

Access: Use of this item is restricted to the UNT Community.
Date: December 2012
Creator: Satumtira, Nisa Tara
Description: Water-soluble Pt(II) phosphors exist predominantly for photophysical studies. However, fewer are known to be candidates for cisplatin derivatives. If such a molecule could exist, it would be efficient at not only destroying the cancerous cells which harm the body, but the destruction would also be traceable within the human body as it occurred. Herein, research accomplished in chemistry describes the photophysical properties of a water-soluble phosphor. Spectroscopically, this phosphor is unique in that it possesses a strong green emission at room temperature in aqueous media. Its emission is also sensitive to the gaseous environment. These properties have been expanded to both analytical and biological applications. Studies showing the potential use of the phosphor as a heavy metal remover from aqueous solutions have been accomplished. The removal of toxic heavy metals was indicated by the loss of emission as well as the appearance of a precipitate. The gaseous sensitivity was elicited to be used as a potential cancerous cell biomarker. In vivo studies were accomplished in a wide variety of species, including bacteria (E. coli), worms (C. elegans), small crustaceans (Artemia), and fish (D. rerio and S. ocellatus). The phosphor in question is detectable in all of the above. This fundamental ...
Contributing Partner: UNT Libraries