Search Results

1-(4, 4'-Dinitrodiphenylmethyl)-Piperidines; 1-(4-Nitrobenzyl)-and 1-(4-Nitrobenzoyl)-Piperdines
This study experiments with the methods of 1-(4, 4'-Dinitrodiphenylmethyl)-Piperidines; 1-(4-Nitrobenzyl)-and 1-(4-Nitrobenzoyl)-Piperdines.
(4+2)-Cycloaddition Reactions of Ketenes; Pyranones
This study deals with the (4+2)-cycloaddition reactions of 4-π electron compounds with ketenes. Chloroketenes were generated in situ from the corresponding chlorinated acid chlorides in the presence of the ketenophiles. Chloro-, dichloro- and diphenylketenes reacted with 1-methoxy-3-trimethylsiloxy-l,3-butadiene, and 2,4-bis(trimethylsiloxy)-1,3-pentadiene to yield the corresponding dihydropyrans. The dihydropyrans yielded substituted 4-pyranones on hydrolysis.
The Abraham Solvation Model Used for Prediction of Solvent-Solute Interactions and New Methods for Updating Parameters
The Abraham solvation model (ABSM) is an experimentally derived predictive model used to help predict various solute properties. This work covers various uses for the ABSM including predicting molar enthalpies of vaporization, predicting solvent coefficients for two new solvents (2,2,5,5-tetramethyloxolane and diethyl carbonate), predicting values for multiple new ionic liquids (ILs). This work also introduces a novel method for updating IL ABSM parameters by updating cation- and anion-specific values using linear algebra and binary matrices.
Acenaphthene and 1,10-Phenanthroline-Fused Βeta-Functionalized Porphyrins
A series of acene-fused porphyrins and 1,10-phenanthroline-fused porphyrins were synthesized and characterized via NMR spectroscopy and mass spectrometry. The acene-fused porphyrins exhibit unique optoelectronic properties, most notably they exhibit highly red-shifted absorption bands. The 1,10-phenanthroline-fused porphyrins are of interest for their ability to bond to as variety of metals to form chelation complexes.
Acetophenone Derivatives; N-Diphenylmethyl and N-Fluorenyl Piperidines
This thesis is a study of α-(4-aminophenylsulfonyl)-acetophenone derivatives; n-diphenylmethyl and n-fluorenyl piperidines.
Activation of Small Molecules by Transition Metal Complexes via Computational Methods
The first study project is based on modeling Earth abundant 3d transition-metal methoxide complexes with potentially redox-noninnocent ligands for methane C–H bond activation to form methanol (LnM-OMe + CH4 → LnM–Me + CH3OH). Three types of complex consisting of tridentate pincer terpyridine-like ligands, and different first-row transition metals (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) were modeled to elucidate the reaction mechanism as well as the effect of the metal identity on the thermodynamics and kinetics of a methane activation reaction. The calculations showed that the d electron count of the metal is a more significant factor than the metal's formal charge in controlling the thermodynamics and kinetics of C–H activation. These researches suggest that late 3d-metal methoxide complexes that favor σ-bond metathesis pathways for methane activation will yield lower barriers for C–H activation, and are more profitable catalyst for future studies. Second, subsequently, on the basis of the first project, density functional theory is used to analyze methane C−H activation by neutral and cationic nickel-methoxide complexes. This study identifies strategies to further lower the barriers for methane C−H activation through evaluation of supporting ligand modifications, solvent polarity, overall charge of complex, metal identity and counterion effects. Overall, neutral low coordinate complexes (e.g. bipyridine) are calculated to have lower activation barriers than the cationic complexes. For both neutral and cationic complexes, the methane C−H activation proceed via a σ-bond metathesis rather than an oxidative addition/reductive elimination pathway. Neutralizing the cationic catalyst models by a counterion, BF4-, has a considerable impact on reducing the methane activation barrier free energy. Third, theoretical studies were performed to explore the effects of appended s-block metal ion crown ethers upon the redox properties of nitridomanganese(V) salen complexes, [(salen)MnV(N)(Mn+-crown ether)]n+, where, M = Na+, K+, Ba2+, Sr2+ for 1Na, 1K, 1Ba, 1Sr …
Addition Reactions of Some Aromatic Aldazines
The paper explores the conclusion that the addition compound was bicyclic, and that the addition of each of the two moles of cyanic acid was dependent upon the other.
Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates
The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline Ta significantly degrade the strength of Cu/Ta chemical interactions, and affect the kinetics of Cu diffusion into bulk Ta. On clean Ta, monolayer coverages of Cu will de-wet only above 600 K. A partial monolayer of adsorbed oxygen (3L O2 at 300 K) results in a lowering of the de-wetting temperature to 500 K, while saturation oxygen coverage (10 L O2, 300 K) results in de-wetting at 300 K. Carbide formation also lowers the de-wetting temperature to 300 K. Diffusion of Cu into the Ta substrate at 1100 K occurs only after a 5-minute induction period. This induction period increases …
Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces
This study was intended to provide a fuller understanding of the surface chemical processes which result in the corrosion of ferrous materials.
The Adsorption of Radioactive Isotopes on Precipitates
This thesis concerns the investigation of radioisotopes as indicators for precipitation reactions. As a precipitate forms in the presence of a radioisotope, adsorption may take place on its surface. If this adsorption changes markedly at the stoichiometric point it will be possible to use this variation as an indicator for the reaction.
The Adsorption of Radioactive Isotopes on Specific Precipitates
The purpose of this investigation is to reveal the effects of certain factors affecting adsorption on some specific precipitates. It is hoped that the choice of precipitate types will enable extension of the information gained here to other precipitates similar to those investigated.
Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions
The objective of this research problem was to synthesize aldohaloketenes and investigate the chemistry of this new class of ketenes.
Allowing Students to Have VOICES (Voluntary Options in Chemical Education Schedules) in General Chemistry I
The purpose of this investigation (a quasi-experimental design called a non-equivalent design group (NEDG)) was to determine if allowing students in a science majors general Chemistry I course the choice in establishing the due dates that their homework was due to the instructor would improve course averages. This study covered two semesters with a total of 288 students participating with n = 158 in the fall and n = 130 in the spring. The students self-selected the homework group, VOICES, that best fit his/her needs which included (1) the instructor's homework schedule, (2) a student-customized schedule or a schedule that followed the exam schedule, or (3) all homework due by the last class day prior to the final exam. Online homework was assigned and graded with individual assignment and homework average grades collected and analyzed. No statistically significant differences were found among the VOICES groups with respect to final course average. Other results of this study replicated findings in the literature; namely, that there is a higher correlation between mathematics skills and course success. Course averages of students who had completed Calculus I or higher were statistically significantly higher than students with less completed mathematics coursework in all VOICES groups. Also, the percentage of successful students in the on-sequence semester (fall) was higher than the percentage of students in the off-sequence semester (spring). No differences were seen in any VOICES group's student demographics or high school chemistry preparation.
Amine Derivatives of 3-chloro-5(8?)-nitro-1,4-naphthoquinone
This work deals with the preparation of amine derivatives of 3-chloro-5(8?)-nitro-1,4-naphthoquinone which are to be tested for anti-tubercular activity by Parke, Davis and Company.
Amino Acid Complexes of Rhodium(III)
This thesis will explore and study rhodium, a group VIII element that has rarely been studied.
a-Amino Alcohol Derivatives of Methyl P-Nitrophenyl Acetate
This thesis describes the synthesis of a series of dialkylaminoalkoxy derivatives of methyl p-nitrophenylacetate for testing as anti-histamine or hay fever drugs.
Aminoketene. Cycloaddition of Ketenes and Imines to Yield β- or δ- Lactams
The purpose of this investigation was to provide a systematic study of the cycloaddition pf (N-alkyl-N-phenylamino)- methoxy-and dichloroketenes to various imines and to investigate the stereochemistry of these cycloadditions.
Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced d-RDF by Ion Chromatography
Waste-to-energy has become an attractive alternative to landfills. One concern in this development is the release of pollutants in the combustion process. The binder enhanced d-RDF pellets satisfy the requirements of environmental acceptance, chemical/biological stability, and being storeable. The acid gas emissions of combusting d-RDF pellets with sulfur-rich coal were analyzed by ion chromatography and decreased when d-RDF pellets were utilized. The results imply the possibility of using d-RDF pellets to substitute for sulfur-rich coal as fuel, and also substantiate the effectiveness of a binder, calcium hydroxide, in decreasing emissions of SOx. In order to perform the analysis of the combustion sample, sampling and sample pretreatment methods prior to the IC analysis and the first derivative detection mode in IC are investigated as well. At least two trapping reagents are necessary for collecting acid gases: one for hydrogen halides, and the other for NOx and SOx. Factors affecting the absorption of acid gases are studied, and the strength of an oxidizing agent is the main factor affecting the collection of NOx and SOx. The absorption preference series of acid gases are determined and the absorption models of acid gases in trapping reagents are derived from the analytical results. To prevent the back-flushing of trapping reagents between impingers when leak-checking, a design for the sampling train is suggested, which can be adopted in sample collections. Several reducing agents are studied for pretreating the sample collected in alkali-permanganate media. Besides the recommendation of the hydrogen peroxide solution in EPA method, methanol and formic acid are worth considering as alternate reducing agents in the pretreatment of alkaline-permanganate media prior to IC analysis. The first derivative conductivity detection mode is developed and used in IC system. It is efficient for the detection and quantification of overlapping peaks as well as being applicable for non-overlapping …
An Analysis of Elementary Science Material Included in Certain Courses of Study and Text Books
The purpose of this study is to assess the contribution of elementary science to the curriculum. The finding of the investigation summarized in table form.
The Analysis of Fire Debris Using Nuclear Magnetic Resonance Spectroscopy
This paper describes a new technique for analyzing fire debris using nuclear magnetic resonance (NMR) spectroscopy. Petroleum distillates, which are commonly used accelerants, were weathered, burned, and steamdistilled. These, as well as virgin samples of the accelerants, were analyzed by gas chromatography and nuclear magnetic resonance spectroscopy. In addition, solvent studies and detectibility limit studies were conducted. The use of NMR is described as a valuable adjunct to the existing methods of analysis.
An Analysis of the Effectiveness of Computer Assisted Instruction in General Chemistry at an Urban University.
The science-major General Chemistry sequence offered at the University of Houston has been investigated with respect to the effectiveness of recent incorporation of various levels of computer technology. As part of this investigation, questionnaire responses, student evaluations and grade averages and distributions from up to the last ten years have been analyzed and compared. Increased use of web-based material is both popular and effective, particularly with respect to providing extra information and supplemental questions. Instructor contact via e-mail is also well-received. Both uses of technology should be encouraged. In contrast, electronic classroom presentation is less popular. While initial use may lead to improved grades and retention, these levels decrease quickly, possibly due to a reduction in instructor spontaneity.
An Analysis of the Naphtha Cut of Cooke county, Texas, Crude Oil
This study attempted to determine hydrocarbons in the crude oil by comparing the results obtained using the two methods of analysis: chemical analysis and Kurtz-Headington analysis. The Kurtz-Headington analysis was found to be adequate to determine hydrocarbons in the crude oil.
The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry
The determination of carbon monoxide is also possible by trapping CO on preconditioned molecular sieve and thermal desorption. Analysis in this case is performed by gas chromatography/mass spectroscopy, although the trapping technique is applicable to other suitable GC techniques.
Anion Exchange and Competition in Layered Double Hydroxides
Exchange reactions of anions, especially ferrocyanide and carbonate, with layered double hydroxides (LDHs) were investigated in relation to the origin of life on the early Earth. The effect on ferrocyanide exchange of concentration, pH, reaction time and cations are discussed. It was found that there were two different kinds of ferrocyanide species: one was that intercalated into the layered structure, occupying a site of D symmetry within the LDHs, while in the other, the ferrocyanide group retains full O symmetry. In addition, very low concentration, ferrocyanide associated with LDH will change its FTIR absorption shape. Carbonate was much more strongly intercalated than ferrocyanide into the LDHs, probably because of the strong hydrogen bonding.
Application-Focused Investigation of Monovalent Metal Complexes for Nanoparticle Synthesis
Over the last 20 years, there has occurred an increase in the number, scope, and impact of nanomaterials projects. By leveraging the Surface Plasmon Resonance of metallic nanoparticles for labelling, sensing, and treatment, researchers have demonstrated the versatile utility of these nanomaterials in medicine. The literature provides evidence of use of simple, well-known chemistry for nanomaterials synthesis when the focus is new applications of nanomaterials. A case in point, is the synthesis of metallic nanoparticles, whereby HAuCl4, CuCl2, Cu(acac)2, and AgNO3 are typically employed as nanoparticle precursors. Unfortunately, the use of these precursors limits the number of applications available to these materials - particularly for AuNPs in medicine, where the byproducts of nanoparticle synthesis (most often surface-adsorbed reductants, toxic stabilizers, and growth directors) cause nanoparticles to fail clinical trials. Despite the several thousand publications detailing the advancements in nanoparticle therapeutics, as of 2017, there were only 50 FDA-approved nanoparticle formulations. Less than 10 were based on metallic nanoparticles. This is a problem because many of these nanoparticle therapeutics demonstrate potent cell killing ability and labeling of cells. A solution to this problem may be the use of weakly coordinated, monovalent metal complexes, which require only one electron to reduce them to their metallic state. Further, by designing nanoparticle syntheses around these monovalent complexes, we can employ weaker, environmentally friendly stabilizers. This strategy also forgoes the use of exogenous reducing agents, because the monovalent complexes can be reduced and stabilized by one reagent. Herein we investigate the use of Au(Me2S)Cl, [Cu(MeCN)4]BF4, and AgBF4 with green stabilizers to synthesize a variety of nanomaterials. We find that a range of sizes of spherical particles, as well as a range of sizes of gold triangular prisms can be synthesized by using techniques that follow this strategy.
Application of Concentration, Adsorption and pH in the Precipitation of the Metal Ions of Groups II and III
In this thesis, the process involved in the precipitations and separations of the metal of Group II and Group III studied. Suggestions have also been offered whereby students can make an analysis without loosing metals in the initial precepitation.
Application of Novel Microporous Polyolefin Silica-Based Substrate in Paper Spray Mass Spectrometry (PS-MS)
This study addressed five key applications of paper spray mass spectrometry (PS-MS): (i) comparative analysis of the microporous substrate with the cellulose-based substrate in drug detection; (ii) detection of more than 190 fentanyl analogs with their fragmentation pattern can be implemented in the future reference for quicker, accurate and sensitive determination; (iii) exploring sweat in a fingerprint to be considered an alternate method to recognize non-invasive markers of metabolites, lipids, narcotics, and explosive residues that can be used in forensic testing applications; (iv) extending and improving better, cost-effective and quick real-time monitoring of the diseased stage using biofluid samples to obtain vastly different lipid information in viral infection such as COVID-19; and (v) mass spectral detection in chemical warfare agent (CWA) stimulant gas exposure with microporous structure absorbency capabilities in air quality monitoring. This novel synthetic material is known as Teslin® (PPG Industries), consisting of a microporous polyolefin single-layered silica matrix, can be used for precise, sensitive, selective, and rapid sample analysis with PS-MS. The Teslin® substrate provided longer activation time for samples and an active signal with a higher concentration of ion formation and mobility compared to cellulose-based papers. Direct analysis of multiple samples showed that, besides being more sensitive to the study and highly efficient with less sample size and spray solvent needed, Teslin® had less interaction with paper source molecules. For less than 60 seconds of processing time, PS-MS can be used as a rapid detection tool, with limited sample preparation requiring less than one microgram of the sample. Overall, the data in this analysis indicate the capacity of the PS-MS as an alternative approach for direct chemical analysis in many applications. Specifically, the waterproof and microporosity characteristics of Teslin® have proven its usefulness in detecting a variety of chemical components in liquid, solid, and gaseous phases …
An Application of the Reformatsky Reaction to the Thiophene Series of Compounds
In view of the increasing importance of thiophene derivatives as chemotherapeutic agents, it was considered of interest to apply the Reformatsky reaction to the synthesis of compounds containing the thiophene nucleus with the thought that these might serve as intermediates for further syntheses.
Application of UV-Vis Spectroscopy to the Monitoring, Characterization and Analysis of Chemical Equilibria of Copper Etching Baths
The continuously increasing demand for innovation in the miniaturization of microelectronics has driven the need for ever more precise fabrication strategies for device packaging, especially for printed circuit boards (PCBs). Subtractive copper etching is a fundamental step in the fabrication process, requiring very precise control of etch rate and etch factor. Changes in the etching chemical equilibrium have significant effects on etching behavior, and CuCl2 / HCl etching baths are typically monitored with several parameters including oxidation-reduction potential, conductivity, and specific gravity. However, the etch rate and etch factor can be difficult to control even under strict engineering controls of those monitoring parameters. The mechanism of acidic cupric chloride etching, regeneration and recovery is complex, and the current monitoring strategies can have difficulty controlling the interlocking chemical equilibria. A complimentary tool, thin-film UV-Vis spectroscopy, can be utilized to improve the current monitoring strategies, as UV-Vis is capable of identifying and predicting etching behavior that the current standard methodologies have difficulty predicting. Furthermore, as a chemically-sensitive probe, UV-Vis can investigate the complex changes to the chemical equilibrium and speciation of the etch bath, and can contribute overall to significant improvements in the control of the copper etching system in order to meet the demands of next-level design strategies.
Applications of Metallic Clusters and Nanoparticles via Soft Landing Ion Mobility, from Reduced to Ambient Pressures
Nanoparticles, simple yet groundbreaking objects have led to the discovery of invaluable information due to their physiological, chemical, and physical properties, have become a hot topic in various fields of study including but not limited to chemistry, biology, and physics. In the work presented here, demonstrations of various applications of chemical free nanoparticles are explored, from the determination of a non-invasive method for the study of the exposome via using soft-landing ion mobility (SLIM) deposited nanoparticles as a matrix-assisted laser desorption/ionization (MALDI-MS) matrix replacement, to the direct SLIM-exposure of nanoparticles onto living organisms. While there is plenty of published work in soft-landing at operating pressures of 1 Torr, the work presented here shows how this technology can be operated at the less common ambient pressure. The ease of construction of this instrument allows for various modifications to be performed for a wide array of applications, furthermore the flexibility in metallic sample, operating pressure, and deposition time only open doors to many other future applications. The work presented will also show that our ambient SLIM system is also able to be operated for toxicological studies, as the operation at ambient pressure opens the door to new applications where vacuum conditions are not desired.
Applications of Nanomanipulation Coupled to Nanospray Mass Spectrometry in Trace Fiber Analysis and Cellular Lipid Analysis.
The novel instrumentation of nanomanipulation coupled to nanospray mass spectrometry and its applications are presented. The nanomanipulator has the resolution of 10nm step sizes allowing for specific fine movement used to probe and characterize objects of interest. Nanospray mass spectrometry only needs a minimum sample volume of 300nl and a minimum sample size of 300attograms to analyze an analyte making it the ideal instrument to couple to nanomanipulation. The nanomanipulator is mounted to an inverted microscope and consists of 4 nano-positioners; these nano-positioners hold end-effectors and other tools used for manipulation. This original coupling has been used to enhance the current abilities of cellular probing and trace fiber analysis. Experiments have been performed to demonstrate the functionality of this instrument and its capabilities. Histidine and caffeine have been sampled directly from single fibers and analyzed. Lipid bodies from cotton seeds have been sampled indirectly and analyzed. The few applications demonstrated are only the beginning of nanomanipulation coupled to nanospray mass spectrometry and the possible applications are numerous especially with the ability to design and fabricate new end-effectors with unique abilities. Future study will be done to further the applications in direct cellular probing including toxicology studies and organelle analysis of single cells. Further studies will be directed in forensic applications of this instrument including gunshot residue sampled from fibers.
Applications of Single Reference Methods to Multi-Reference Problems
Density functional theory is an efficient and useful method of solving single-reference computational chemistry problems, however it struggles with multi-reference systems. Modifications have been developed in order to improve the capabilities of density functional theory. In this work, density functional theory has been successfully applied to solve multi-reference systems with large amounts of non-dynamical correlation by use of modifications. It has also been successfully applied for geometry optimizations for lanthanide trifluorides.
An Approach Towards the Total Synthesis of Clonostachydiol
The syntheses of the unsymmetrical 14-membered bismacrolides have been reviewed. A total synthesis of clonostachydiol, the latest to join this family, has been attempted using trimethylsilyl acetylene as the builiding block and palladium catalyzed reactions for the formation of key bonds. The alkyne groups were introduced by Stille coupling of trimethylstannylethynyltrimethylsilane with an acid chloride for one fragment and by addition of lithiotrimethylsilyl acetylene to an aldehyde for the other. Lactic acid derivatives were chosen as starting materials for both fragments, thus introducing two of the chiral centers. The remaining stereocenters were introduced using stereoselective reductions of ketones.
Aqueous Solubilities and Transformation of Chlorinated Benzenes
Aqueous solubilities of twelve chlorinated benzenes were determined by two methods. In one method, the solutions in water were prepared by a vigorous stirring method followed by n-hexane extraction and GC-ECD analysis. In the second method, HPLC was used to prepare the saturated solutions. Experimental results were compared with the predictive values, the relative standard deviations are around 10%. Most of the chlorinated benzenes exhibit water induced transformations. The transformation products were either isomeric or with higher and lower numbers of chlorine substituents. The transformation phenomena can be explained by polarity, symmetry, reactivity of the chlorine atoms, and hydrophobic interactions. The mechanism of the transformation is governed by the radical mechanism.
Aqueous Solubilities and Water Induced Transformations of Halogenated Benzenes
Methods of determining the aqueous solubilities of twelve chlorinated benzenes were evaluated in pure and in different water matrices. In pure water, results were comparable with the calculated values. Higher chlorinated tetrachlorobenzenes (TeCBs), pentachlorobenzenes (PCBz), and hexachlorobenzenes (HCBs) gave better precision and accuracy than lower chlorinated monochlorobenzenes (MCBs), dichlorobenzenes (DCBs), or trichlorobenzenes (TCBs).
Aromatic Amino Acid Studies
Pyridine ring analogs of the aromatic amino acids phenylalanine and tyrosine were synthesized and studied in microbiological and mammalian systems.
Aromaticity, Supramolecular Stacks, and Luminescence Properties of Cyclic Trinuclear Complexes
The dissertation covers three major topics: metal-assisted aromaticity, synthetic approaches to tailor donor-acceptor supramolecular stacks, and photoluminescence properties of cyclic trinuclear complexes (CTCs) of d10 metals. First, multiple theoretical approaches are adapted to discuss in detail the origin of aromaticity of CTCs, putting forward a metal-assisted aromaticity model. Next are the discoveries of donor-acceptor stacked CTC–CTC' complexes from both experimental and computational perspectives, reporting multiple novel crystallography-determined structures and revealing their pertinent intermolecular ground-state charge transfer. The spontaneous binding behavior is also determined by UV-vis and NMR titrations and rationalized as the cooperation of multiple supramolecular interactions, including metallophilicity, electrostatic attraction, and dispersion. The last part includes systematic investigations of photoluminescence properties of halogen-metal-bonded CTCs and sandwich-like cation–π-bonded heptanuclear clusters based on CTCs. The cooperative effects of metal-centered conformation, the heavy-atom and relativistic effects from both the halogen and metal atoms play complementary roles in the phosphorescence process to promote the inter-system crossing and radiative transitions.
The Ascorbic Acid Metabolism of Fifty College Women in the North Texas State Teachers College
A study of the ascorbic acid metabolism of a group of fifty college women in the North Texas State Teachers College between the months of April and July, 1943.
Atomic Layer Deposition of Boron Oxide and Boron Nitride for Ultrashallow Doping and Capping Applications
The deposition of boron oxide (B₂O₃) films on silicon substrates is of significant interest in microelectronics for ultrashallow doping applications. However, thickness control and conformality of such films has been an issue in high aspect ratio 3D structures which have long replaced traditional planar transistor architectures. B₂O₃ films are also unstable in atmosphere, requiring a suitable capping barrier for passivation. The growth of continuous, stoichiometric B₂O₃ and boron nitride (BN) films has been demonstrated in this dissertation using Atomic Layer Deposition (ALD) and enhanced ALD methods for doping and capping applications. Low temperature ALD of B₂O₃ was achieved using BCl₃/H₂O precursors at 300 K. In situ x-ray photoelectron spectroscopy (XPS) was used to assess the purity and stoichiometry of deposited films with a high reported growth rate of ~2.5 Å/cycle. Free-radical assisted ALD of B₂O₃ was also demonstrated using non-corrosive trimethyl borate (TMB) precursor, in conjunction with mixed O₂/O-radical effluent, at 300 K. The influence of O₂/O flux on TMB-saturated Si surface was investigated using in situ XPS, residual gas analysis mass spectrometer (RGA-MS) and ab initio molecular dynamics simulations (AIMD). Both low and high flux regimes were studied in order to understand the trade-off between ligand removal and B₂O₃ growth rate. Optimization of precursor flux was discovered to be imperative in plasma and radical-assisted ALD processes. BN was investigated as a novel capping barrier for B₂O₃ and B-Si-oxide films. A BN capping layer, deposited using BCl₃/NH₃ ALD at 600 K, demonstrated excellent stoichiometry and consistent growth rate (1.4 Å/cycle) on both films. Approximately 13 Å of BN was sufficient to protect ~13 Å of B₂O₃ and ~5 Å of B-Si-oxide from atmospheric moisture and prevent volatile boric acid formation. BN/B₂O₃/Si heterostructures are also stable at high temperatures (>1000 K) commonly used for dopant drive-in and activation. BN shows great …
Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces
The direct epitaxial growth of multilayer BN by atomic layer deposition is of critical significance forfo two-dimensional device applications. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) demonstrate layer-by-layer BN epitaxy on two different substrates. One substrate was a monolayer of RuO2(110) formed on a Ru(0001) substrate, the other was an atomically clean Ni(111) single crystal. Growth was accomplished atomic layer deposition (ALD) cycles of BCl3/NH3 at 600 K substrate temperature and subsequent annealing in ultrahigh vacuum (UHV). This yielded stoichiometric BN layers, and an average BN film thickness linearly proportional to the number of BCl3/NH3 cycles. The BN(0001)/RuO2(110) interface had negligible charge transfer or band bending as indicated by XPS and LEED data indicate a 30° rotation between the coincident BN and oxide lattices. The atomic layer epitaxy of BN on an oxide surface suggests new routes to the direct growth and integration of graphene and BN with industrially important substrates, including Si(100). XPS and LEED indicated epitaxial deposition of h-BN(0001) on the Ni(111) single crystal by ALD, and subsequent epitaxially aligned graphene was deposited by chemical vapor deposition (CVD) of ethylene at 1000 K. Direct multilayer, in situ growth of h-BN on magnetic substrates such as Ni is important for spintronic device applications. Solid-state electrolytes (SSEs) are of significant interest for their promise as lithium-ion conducting materials but are prone to degradation due to lithium carbonate formation on the surface upon exposure to atmosphere, adversely impacting Li ion conduction. In situ XPS monitored changes in the composition of the SSE Li garnet (Li6.5La3Zr1.5Ta0.5O12, LLZTaO) upon annealing in UHV and upon Ar+ ion sputtering. Trends in core level spectra demonstrate that binding energy (BE) calibration of the Li 1s at 56.4 eV, yields a more consistent interpretation of results than the more commonly used standard of the …
An Attempt to Produce a High Octane Gasoline from C4 Hydrocarbons
This thesis presents the results of an experiment conducted to discover if selenic acid or monazite sand are possible catalysts that can be used for the alkylation of isobutane and isobutene.
Attempted Synthesis of 5-Allyl-5-(2-Thienyl)-Barbituric Acid
This thesis describes attempts to synthesize 5-allyl-5-(2-thienyl)-barbituric acid as an improved anticonvulsant.
Attempted Synthesis of Dibarbituric Acid
This study is an attempted synthesis of dithienyl barbituric acid.
The Attempted Synthesis of some Heterocyclic Sulfones
This thesis describes two experiments: one related to antihistamines, and the other related to antitubercular compounds.
Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione
Baeyer-Villiger oxidation of 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (1,9-dibromo-PCU-8,11-dione) was performed by using an excess amount of m-chloroperbenzoic acid (3 equivalents) and resulted in the formation of the corresponding monolactone. The reaction would not proceed to the dilactone stage. The structure of the reaction product was established unequivocally via single crystal X-ray diffraction. Baeyer-Villiger oxidation of 1,9-dibromo-PCU-8,11-dione using ceric ammonium nitrate (CAN) was also performed and afforded a mixture of lactones. Only one of these lactones, which also contained an alkene functionality, could be isolated and characterized. 1,7-dibromo-PCU-8,11-dione was also reacted with CAN, yielding the mono-lactone, which has also been characterized.
Barbituric Acids as Anticonvulsants. IV. 5-Substituted-Mercapto Derivatives of 5-Phenylbarbituric Acids.
This study involves compounds of the barbituric acid series are well known for their use as anesthetics and sedatives.
Barbituric Acids. VI. 5-substituted-mercapto Derivatives of 5-ethylbarbituric Acid
The reaction of 5-bromo-5-ethylbarbituric acid with mercaptan and pyridine in cold ether solution was studied and was found to be satisfactory for the preparation of the compounds reported in this work.
Barbituric Acids. VII. 5-alkyl-derivatives of 5-ethoxy-barbituric Acid
A great deal of research has been devoted in recent years to the search for new drugs for the treatment of epilepsy and related convulsive disorders. This emphasis is occasioned by the fact that no one drug is effective for all patients, and also by the fact that the toxicity of a drug varies considerably from one patient to another. Among the most effective drugs are certain members of the hydantoin and barbituric acid series. For some time there has been in progress in this laboratory an investigation of members of these two series in which a hetro atom attached directly to the hetrocyclic nucleus is introduced into the side chain at position five of these two series.
Barbituric Acids. VIII. 5-substituted-5-(1-pyrrolidyl)barbituric Acids
The purpose of this investigation then was the preparation of a series of 5-substituted-5-(1-pyrrolidyl)barbituric acids in which R would consist of alkyl groups ranging in size from methyl to amyl, and other groups such as phenyl and benzyl. These compounds are to be tested elsewhere for hypnotic and anticonvulsant activity.
Barbituric Acids. V. 5-substituted-mercapto Derivatives of 5-isoamylbarbituric Acid
Since no mention has been found in the literature of any 5-substituted mercapto-5-alkyl derivatives of barbituric acid, it was thought to be of interest to prepare a series of compounds containing sulfur attached directly to the barbituric acid nucleus. 5-substituted mercapto-5-isoamylbarbituric acids were chosen as representative of barbituric acids in which the alkyl group has a fairly high molecular weight.
Back to Top of Screen