You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Degree Discipline: Computer Science
3D Reconstruction Using Lidar and Visual Images

3D Reconstruction Using Lidar and Visual Images

Date: December 2012
Creator: Duraisamy, Prakash
Description: In this research, multi-perspective image registration using LiDAR and visual images was considered. 2D-3D image registration is a difficult task because it requires the extraction of different semantic features from each modality. This problem is solved in three parts. The first step involves detection and extraction of common features from each of the data sets. The second step consists of associating the common features between two different modalities. Traditional methods use lines or orthogonal corners as common features. The third step consists of building the projection matrix. Many existing methods use global positing system (GPS) or inertial navigation system (INS) for an initial estimate of the camera pose. However, the approach discussed herein does not use GPS, INS, or any such devices for initial estimate; hence the model can be used in places like the lunar surface or Mars where GPS or INS are not available. A variation of the method is also described, which does not require strong features from both images but rather uses intensity gradients in the image. This can be useful when one image does not have strong features (such as lines) or there are too many extraneous features.
Contributing Partner: UNT Libraries
Adaptive Planning and Prediction in Agent-Supported Distributed Collaboration.

Adaptive Planning and Prediction in Agent-Supported Distributed Collaboration.

Date: December 2004
Creator: Hartness, Ken T. N.
Description: Agents that act as user assistants will become invaluable as the number of information sources continue to proliferate. Such agents can support the work of users by learning to automate time-consuming tasks and filter information to manageable levels. Although considerable advances have been made in this area, it remains a fertile area for further development. One application of agents under careful scrutiny is the automated negotiation of conflicts between different user's needs and desires. Many techniques require explicit user models in order to function. This dissertation explores a technique for dynamically constructing user models and the impact of using them to anticipate the need for negotiation. Negotiation is reduced by including an advising aspect to the agent that can use this anticipation of conflict to adjust user behavior.
Contributing Partner: UNT Libraries
Algorithm Optimizations in Genomic Analysis Using Entropic Dissection

Algorithm Optimizations in Genomic Analysis Using Entropic Dissection

Date: August 2015
Creator: Danks, Jacob R.
Description: In recent years, the collection of genomic data has skyrocketed and databases of genomic data are growing at a faster rate than ever before. Although many computational methods have been developed to interpret these data, they tend to struggle to process the ever increasing file sizes that are being produced and fail to take advantage of the advances in multi-core processors by using parallel processing. In some instances, loss of accuracy has been a necessary trade off to allow faster computation of the data. This thesis discusses one such algorithm that has been developed and how changes were made to allow larger input file sizes and reduce the time required to achieve a result without sacrificing accuracy. An information entropy based algorithm was used as a basis to demonstrate these techniques. The algorithm dissects the distinctive patterns underlying genomic data efficiently requiring no a priori knowledge, and thus is applicable in a variety of biological research applications. This research describes how parallel processing and object-oriented programming techniques were used to process larger files in less time and achieve a more accurate result from the algorithm. Through object oriented techniques, the maximum allowable input file size was significantly increased from 200 ...
Contributing Partner: UNT Libraries
Anchor Nodes Placement for Effective Passive Localization

Anchor Nodes Placement for Effective Passive Localization

Access: Use of this item is restricted to the UNT Community.
Date: August 2010
Creator: Pasupathy, Karthikeyan
Description: Wireless sensor networks are composed of sensor nodes, which can monitor an environment and observe events of interest. These networks are applied in various fields including but not limited to environmental, industrial and habitat monitoring. In many applications, the exact location of the sensor nodes is unknown after deployment. Localization is a process used to find sensor node's positional coordinates, which is vital information. The localization is generally assisted by anchor nodes that are also sensor nodes but with known locations. Anchor nodes generally are expensive and need to be optimally placed for effective localization. Passive localization is one of the localization techniques where the sensor nodes silently listen to the global events like thunder sounds, seismic waves, lighting, etc. According to previous studies, the ideal location to place anchor nodes was on the perimeter of the sensor network. This may not be the case in passive localization, since the function of anchor nodes here is different than the anchor nodes used in other localization systems. I do extensive studies on positioning anchor nodes for effective localization. Several simulations are run in dense and sparse networks for proper positioning of anchor nodes. I show that, for effective passive localization, the ...
Contributing Partner: UNT Libraries
An Approach Towards Self-Supervised Classification Using Cyc

An Approach Towards Self-Supervised Classification Using Cyc

Date: December 2006
Creator: Coursey, Kino High
Description: Due to the long duration required to perform manual knowledge entry by human knowledge engineers it is desirable to find methods to automatically acquire knowledge about the world by accessing online information. In this work I examine using the Cyc ontology to guide the creation of Naïve Bayes classifiers to provide knowledge about items described in Wikipedia articles. Given an initial set of Wikipedia articles the system uses the ontology to create positive and negative training sets for the classifiers in each category. The order in which classifiers are generated and used to test articles is also guided by the ontology. The research conducted shows that a system can be created that utilizes statistical text classification methods to extract information from an ad-hoc generated information source like Wikipedia for use in a formal semantic ontology like Cyc. Benefits and limitations of the system are discussed along with future work.
Contributing Partner: UNT Libraries
Automated Classification of Emotions Using Song Lyrics

Automated Classification of Emotions Using Song Lyrics

Date: December 2012
Creator: Schellenberg, Rajitha
Description: This thesis explores the classification of emotions in song lyrics, using automatic approaches applied to a novel corpus of 100 popular songs. I use crowd sourcing via Amazon Mechanical Turk to collect line-level emotions annotations for this collection of song lyrics. I then build classifiers that rely on textual features to automatically identify the presence of one or more of the following six Ekman emotions: anger, disgust, fear, joy, sadness and surprise. I compare different classification systems and evaluate the performance of the automatic systems against the manual annotations. I also introduce a system that uses data collected from the social network Twitter. I use the Twitter API to collect a large corpus of tweets manually labeled by their authors for one of the six emotions of interest. I then compare the classification of emotions obtained when training on data automatically collected from Twitter versus data obtained through crowd sourced annotations.
Contributing Partner: UNT Libraries
Automated Defense Against Worm Propagation.

Automated Defense Against Worm Propagation.

Access: Use of this item is restricted to the UNT Community.
Date: December 2005
Creator: Patwardhan, Sudeep
Description: Worms have caused significant destruction over the last few years. Network security elements such as firewalls, IDS, etc have been ineffective against worms. Some worms are so fast that a manual intervention is not possible. This brings in the need for a stronger security architecture which can automatically react to stop worm propagation. The method has to be signature independent so that it can stop new worms. In this thesis, an automated defense system (ADS) is developed to automate defense against worms and contain the worm to a level where manual intervention is possible. This is accomplished with a two level architecture with feedback at each level. The inner loop is based on control system theory and uses the properties of PID (proportional, integral and differential controller). The outer loop works at the network level and stops the worm to reach its spread saturation point. In our lab setup, we verified that with only inner loop active the worm was delayed, and with both loops active we were able to restrict the propagation to 10% of the targeted hosts. One concern for deployment of a worm containment mechanism was degradation of throughput for legitimate traffic. We found that with proper ...
Contributing Partner: UNT Libraries
Automated Syndromic Surveillance using Intelligent Mobile Agents

Automated Syndromic Surveillance using Intelligent Mobile Agents

Date: December 2007
Creator: Miller, Paul
Description: Current syndromic surveillance systems utilize centralized databases that are neither scalable in storage space nor in computing power. Such systems are limited in the amount of syndromic data that may be collected and analyzed for the early detection of infectious disease outbreaks. However, with the increased prevalence of international travel, public health monitoring must extend beyond the borders of municipalities or states which will require the ability to store vasts amount of data and significant computing power for analyzing the data. Intelligent mobile agents may be used to create a distributed surveillance system that will utilize the hard drives and computer processing unit (CPU) power of the hosts on the agent network where the syndromic information is located. This thesis proposes the design of a mobile agent-based syndromic surveillance system and an agent decision model for outbreak detection. Simulation results indicate that mobile agents are capable of detecting an outbreak that occurs at all hosts the agent is monitoring. Further study of agent decision models is required to account for localized epidemics and variable agent movement rates.
Contributing Partner: UNT Libraries
Automatic Removal of Complex Shadows From Indoor Videos

Automatic Removal of Complex Shadows From Indoor Videos

Date: August 2015
Creator: Mohapatra, Deepankar
Description: Shadows in indoor scenarios are usually characterized with multiple light sources that produce complex shadow patterns of a single object. Without removing shadow, the foreground object tends to be erroneously segmented. The inconsistent hue and intensity of shadows make automatic removal a challenging task. In this thesis, a dynamic thresholding and transfer learning-based method for removing shadows is proposed. The method suppresses light shadows with a dynamically computed threshold and removes dark shadows using an online learning strategy that is built upon a base classifier trained with manually annotated examples and refined with the automatically identified examples in the new videos. Experimental results demonstrate that despite variation of lighting conditions in videos our proposed method is able to adapt to the videos and remove shadows effectively. The sensitivity of shadow detection changes slightly with different confidence levels used in example selection for classifier retraining and high confidence level usually yields better performance with less retraining iterations.
Contributing Partner: UNT Libraries
Automatic Tagging of Communication Data

Automatic Tagging of Communication Data

Date: August 2012
Creator: Hoyt, Matthew Ray
Description: Globally distributed software teams are widespread throughout industry. But finding reliable methods that can properly assess a team's activities is a real challenge. Methods such as surveys and manual coding of activities are too time consuming and are often unreliable. Recent advances in information retrieval and linguistics, however, suggest that automated and/or semi-automated text classification algorithms could be an effective way of finding differences in the communication patterns among individuals and groups. Communication among group members is frequent and generates a significant amount of data. Thus having a web-based tool that can automatically analyze the communication patterns among global software teams could lead to a better understanding of group performance. The goal of this thesis, therefore, is to compare automatic and semi-automatic measures of communication and evaluate their effectiveness in classifying different types of group activities that occur within a global software development project. In order to achieve this goal, we developed a web-based component that can be used to help clean and classify communication activities. The component was then used to compare different automated text classification techniques on various group activities to determine their effectiveness in correctly classifying data from a global software development team project.
Contributing Partner: UNT Libraries
Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Date: May 2014
Creator: Guan, Qiang
Description: The increasingly popular cloud-computing paradigm provides on-demand access to computing and storage with the appearance of unlimited resources. Users are given access to a variety of data and software utilities to manage their work. Users rent virtual resources and pay for only what they use. In spite of the many benefits that cloud computing promises, the lack of dependability in shared virtualized infrastructures is a major obstacle for its wider adoption, especially for mission-critical applications. Virtualization and multi-tenancy increase system complexity and dynamicity. They introduce new sources of failure degrading the dependability of cloud computing systems. To assure cloud dependability, in my dissertation research, I develop autonomic failure identification and diagnosis techniques that are crucial for understanding emergent, cloud-wide phenomena and self-managing resource burdens for cloud availability and productivity enhancement. We study the runtime cloud performance data collected from a cloud test-bed and by using traces from production cloud systems. We define cloud signatures including those metrics that are most relevant to failure instances. We exploit profiled cloud performance data in both time and frequency domain to identify anomalous cloud behaviors and leverage cloud metric subspace analysis to automate the diagnosis of observed failures. We implement a prototype of the ...
Contributing Partner: UNT Libraries
Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Date: May 2006
Creator: Abbas, Kaja Moinudeen
Description: Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with ...
Contributing Partner: UNT Libraries
Boosting for Learning From Imbalanced, Multiclass Data Sets

Boosting for Learning From Imbalanced, Multiclass Data Sets

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Abouelenien, Mohamed
Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared ...
Contributing Partner: UNT Libraries
Classifying Pairwise Object Interactions: A Trajectory Analytics Approach

Classifying Pairwise Object Interactions: A Trajectory Analytics Approach

Date: May 2015
Creator: Janmohammadi, Siamak
Description: We have a huge amount of video data from extensively available surveillance cameras and increasingly growing technology to record the motion of a moving object in the form of trajectory data. With proliferation of location-enabled devices and ongoing growth in smartphone penetration as well as advancements in exploiting image processing techniques, tracking moving objects is more flawlessly achievable. In this work, we explore some domain-independent qualitative and quantitative features in raw trajectory (spatio-temporal) data in videos captured by a fixed single wide-angle view camera sensor in outdoor areas. We study the efficacy of those features in classifying four basic high level actions by employing two supervised learning algorithms and show how each of the features affect the learning algorithms’ overall accuracy as a single factor or confounded with others.
Contributing Partner: UNT Libraries
CLUE: A Cluster Evaluation Tool

CLUE: A Cluster Evaluation Tool

Date: December 2006
Creator: Parker, Brandon S.
Description: Modern high performance computing is dependent on parallel processing systems. Most current benchmarks reveal only the high level computational throughput metrics, which may be sufficient for single processor systems, but can lead to a misrepresentation of true system capability for parallel systems. A new benchmark is therefore proposed. CLUE (Cluster Evaluator) uses a cellular automata algorithm to evaluate the scalability of parallel processing machines. The benchmark also uses algorithmic variations to evaluate individual system components' impact on the overall serial fraction and efficiency. CLUE is not a replacement for other performance-centric benchmarks, but rather shows the scalability of a system and provides metrics to reveal where one can improve overall performance. CLUE is a new benchmark which demonstrates a better comparison among different parallel systems than existing benchmarks and can diagnose where a particular parallel system can be optimized.
Contributing Partner: UNT Libraries
Computational Epidemiology - Analyzing Exposure Risk: A Deterministic, Agent-Based Approach

Computational Epidemiology - Analyzing Exposure Risk: A Deterministic, Agent-Based Approach

Date: August 2009
Creator: O'Neill II, Martin Joseph
Description: Many infectious diseases are spread through interactions between susceptible and infectious individuals. Keeping track of where each exposure to the disease took place, when it took place, and which individuals were involved in the exposure can give public health officials important information that they may use to formulate their interventions. Further, knowing which individuals in the population are at the highest risk of becoming infected with the disease may prove to be a useful tool for public health officials trying to curtail the spread of the disease. Epidemiological models are needed to allow epidemiologists to study the population dynamics of transmission of infectious agents and the potential impact of infectious disease control programs. While many agent-based computational epidemiological models exist in the literature, they focus on the spread of disease rather than exposure risk. These models are designed to simulate very large populations, representing individuals as agents, and using random experiments and probabilities in an attempt to more realistically guide the course of the modeled disease outbreak. The work presented in this thesis focuses on tracking exposure risk to chickenpox in an elementary school setting. This setting is chosen due to the high level of detailed information realistically available to ...
Contributing Partner: UNT Libraries
Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Date: August 2015
Creator: Liang, Yiheng
Description: Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of ...
Contributing Partner: UNT Libraries
Computational Methods for Vulnerability Analysis and Resource Allocation in Public Health Emergencies

Computational Methods for Vulnerability Analysis and Resource Allocation in Public Health Emergencies

Date: August 2015
Creator: Indrakanti, Saratchandra
Description: POD (Point of Dispensing)-based emergency response plans involving mass prophylaxis may seem feasible when considering the choice of dispensing points within a region, overall population density, and estimated traffic demands. However, the plan may fail to serve particular vulnerable sub-populations, resulting in access disparities during emergency response. Federal authorities emphasize on the need to identify sub-populations that cannot avail regular services during an emergency due to their special needs to ensure effective response. Vulnerable individuals require the targeted allocation of appropriate resources to serve their special needs. Devising schemes to address the needs of vulnerable sub-populations is essential for the effectiveness of response plans. This research focuses on data-driven computational methods to quantify and address vulnerabilities in response plans that require the allocation of targeted resources. Data-driven methods to identify and quantify vulnerabilities in response plans are developed as part of this research. Addressing vulnerabilities requires the targeted allocation of appropriate resources to PODs. The problem of resource allocation to PODs during public health emergencies is introduced and the variants of the resource allocation problem such as the spatial allocation, spatio-temporal allocation and optimal resource subset variants are formulated. Generating optimal resource allocation and scheduling solutions can be computationally hard ...
Contributing Partner: UNT Libraries
Cross Language Information Retrieval for Languages with Scarce Resources

Cross Language Information Retrieval for Languages with Scarce Resources

Date: May 2009
Creator: Loza, Christian
Description: Our generation has experienced one of the most dramatic changes in how society communicates. Today, we have online information on almost any imaginable topic. However, most of this information is available in only a few dozen languages. In this thesis, I explore the use of parallel texts to enable cross-language information retrieval (CLIR) for languages with scarce resources. To build the parallel text I use the Bible. I evaluate different variables and their impact on the resulting CLIR system, specifically: (1) the CLIR results when using different amounts of parallel text; (2) the role of paraphrasing on the quality of the CLIR output; (3) the impact on accuracy when translating the query versus translating the collection of documents; and finally (4) how the results are affected by the use of different dialects. The results show that all these variables have a direct impact on the quality of the CLIR system.
Contributing Partner: UNT Libraries
Cuff-less Blood Pressure Measurement Using a Smart Phone

Cuff-less Blood Pressure Measurement Using a Smart Phone

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Jonnada, Srikanth
Description: Blood pressure is vital sign information that physicians often need as preliminary data for immediate intervention during emergency situations or for regular monitoring of people with cardiovascular diseases. Despite the availability of portable blood pressure meters in the market, they are not regularly carried by people, creating a need for an ultra-portable measurement platform or device that can be easily carried and used at all times. One such device is the smartphone which, according to comScore survey is used by 26.2% of the US adult population. the mass production of these phones with built-in sensors and high computation power has created numerous possibilities for application development in different domains including biomedical. Motivated by this capability and their extensive usage, this thesis focuses on developing a blood pressure measurement platform on smartphones. Specifically, I developed a blood pressure measurement system on a smart phone using the built-in camera and a customized external microphone. the system consists of first obtaining heart beats using the microphone and finger pulse with the camera, and finally calculating the blood pressure using the recorded data. I developed techniques for finding the best location for obtaining the data, making the system usable by all categories of people. ...
Contributing Partner: UNT Libraries
Ddos Defense Against Botnets in the Mobile Cloud

Ddos Defense Against Botnets in the Mobile Cloud

Date: May 2014
Creator: Jensen, David
Description: Mobile phone advancements and ubiquitous internet connectivity are resulting in ever expanding possibilities in the application of smart phones. Users of mobile phones are now capable of hosting server applications from their personal devices. Whether providing services individually or in an ad hoc network setting the devices are currently not configured for defending against distributed denial of service (DDoS) attacks. These attacks, often launched from a botnet, have existed in the space of personal computing for decades but recently have begun showing up on mobile devices. Research is done first into the required steps to develop a potential botnet on the Android platform. This includes testing for the amount of malicious traffic an Android phone would be capable of generating for a DDoS attack. On the other end of the spectrum is the need of mobile devices running networked applications to develop security against DDoS attacks. For this mobile, phones are setup, with web servers running Apache to simulate users running internet connected applications for either local ad hoc networks or serving to the internet. Testing is done for the viability of using commonly available modules developed for Apache and intended for servers as well as finding baseline capabilities of ...
Contributing Partner: UNT Libraries
Design and Analysis of Novel Verifiable Voting Schemes

Design and Analysis of Novel Verifiable Voting Schemes

Date: December 2013
Creator: Yestekov, Yernat
Description: Free and fair elections are the basis for democracy, but conducting elections is not an easy task. Different groups of people are trying to influence the outcome of the election in their favor using the range of methods, from campaigning for a particular candidate to well-financed lobbying. Often the stakes are too high, and the methods are illegal. Two main properties of any voting scheme are the privacy of a voter’s choice and the integrity of the tally. Unfortunately, they are mutually exclusive. Integrity requires making elections transparent and auditable, but at the same time, we must preserve a voter’s privacy. It is always a trade-off between these two requirements. Current voting schemes favor privacy over auditability, and thus, they are vulnerable to voting fraud. I propose two novel voting systems that can achieve both privacy and verifiability. The first protocol is based on cryptographical primitives to ensure the integrity of the final tally and privacy of the voter. The second protocol is a simple paper-based voting scheme that achieves almost the same level of security without usage of cryptography.
Contributing Partner: UNT Libraries
Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications

Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications

Date: May 2010
Creator: Yang, Jue
Description: Environmental monitoring represents a major application domain for wireless sensor networks (WSN). However, despite significant advances in recent years, there are still many challenging issues to be addressed to exploit the full potential of the emerging WSN technology. In this dissertation, we introduce the design and implementation of low-power wireless sensor networks for long-term, autonomous, and near-real-time environmental monitoring applications. We have developed an out-of-box solution consisting of a suite of software, protocols and algorithms to provide reliable data collection with extremely low power consumption. Two wireless sensor networks based on the proposed solution have been deployed in remote field stations to monitor soil moisture along with other environmental parameters. As parts of the ever-growing environmental monitoring cyberinfrastructure, these networks have been integrated into the Texas Environmental Observatory system for long-term operation. Environmental measurement and network performance results are presented to demonstrate the capability, reliability and energy-efficiency of the network.
Contributing Partner: UNT Libraries
The Design Of A Benchmark For Geo-stream Management Systems

The Design Of A Benchmark For Geo-stream Management Systems

Date: December 2011
Creator: Shen, Chao
Description: The recent growth in sensor technology allows easier information gathering in real-time as sensors have grown smaller, more accurate, and less expensive. The resulting data is often in a geo-stream format continuously changing input with a spatial extent. Researchers developing geo-streaming management systems (GSMS) require a benchmark system for evaluation, which is currently lacking. This thesis presents GSMark, a benchmark for evaluating GSMSs. GSMark provides a data generator that creates a combination of synthetic and real geo-streaming data, a workload simulator to present the data to the GSMS as a data stream, and a set of benchmark queries that evaluate typical GSMS functionality and query performance. In particular, GSMark generates both moving points and evolving spatial regions, two fundamental data types for a broad range of geo-stream applications, and the geo-streaming queries on this data.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST