Search Results

Dependence of the Kinetic Mechanism of Adenosine 3',5'-Monophosphate Dependent Protein Kinase Catalytic Subunit in the Direction of Magnesium Adenosine 5'-Diphosphate Phosphorylation on pH and the Concentration of Free Magnesium Ions
To define the overall kinetic and chemical mechanism of adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit, the mechanism in the direction of MgADP phosphorylation was determined, using studies of initial velocity in the absence and presence of dead-end inhibitors. The kinetic mechanism was determined as a function of uncomplexed Mg^2+ (Mg_f) at pH 7.2 and as a function of pH at low (0.5 mM) Mg_f. At pH 7.2 data are consistent with a random kinetic mechanism in the direction of MgADP phosphorylation with both pathways allowed: the pathway in which MgADP binds to enzyme prior to phosphorylated peptide (PSP) and that in which PSP binds before MgADP. One or the other pathway predominates, depending on Mg_f concentration. At 0.5 mM Mg_f, the mechanism is steady-state ordered with the pathway where PSP binds first preferred; at 10 mM Mg_f, the mechanism is equilibrium ordered, and the pathway in which MgADP binds first preferred. This change in mechanism to equilibrium ordered is due to an increase in affinity of enzyme for MgADP and a decrease in affinity for PSP. There is also a pH-dependent change in mechanism at 0.5 mM Mg_f. At pH 6 the mechanism is equilibrium ordered with the pathway where PSP binds first preferred. At pH 7.6 the mechanism is ordered with MgADP binding first. The log V/E_t vs. pH profile is pH-independent, suggesting only the correctly protonated form of each substrate binds to enzyme. The log V/K_MgADP vs. PH profile gives a pK of 7, likely that of a general acid, which must be protonated for activity. The pK_iPSP vs. pH profile gives a pK of 6.5, likely reflecting the peptide phosphoryl group, which must be unprotonated for activity.
Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase: Identification, Purification and Biochemical Characterization of a Unique Acyltransferase
N-Acylphosphatidylethanoiamine (NAPE) is synthesized in the microsomes of cotton seedlings by a mechanism that is possibly unique to plants, the ATP-, Ca2+-, and CoA-independent acylation ofphosphatidylethanolamine (PE) with unesterified free fatty acids (FFAs), catalyzed by NAPE synthase. A photoreactive free fatty acid analogue, 12-[(4- azidosalicyl)amino]dodecanoic acid (ASD), and its 125I-labeled derivative acted as substrates for the NAPE synthase enzyme.
Fumarate Activation and Kinetic Solvent Isotope Effects as Probes of the NAD-Malic Enzyme Reaction
The kinetic mechanism of activation of the NAD-malic enzyme by fumarate and the transition state structure for the oxidation malate for the NAD-malic enzyme reaction have been studied. Fumarate exerts its activating effect by decreasing the off-rate for malate from the E:Mg:malate and E:Mg:NAD:malate complexes. The activation by fumarate results in a decrease in K_imalate and an increase in V/K_malate by about 2-fold, while the maximum velocity remains constant. A discrimination exists between active and activator sites for the binding of dicarboxylic acids. Activation by fumarate is proposed to have physiologic importance in the parasite. The hydride transfer transition state for the NAD-malic enzyme reaction is concerted with respect to solvent isotope sensitive and hydride transfer steps. Two protons are involved in the solvent isotope sensitive step, one with a normal fractionation factor, another with an inverse fractionation factor. A structure for the transition state for hydride transfer in the NAD-malic enzyme reaction is proposed.
Application of Synthetic Peptides as Substrates for Reversible Phosphorylation
Two highly homologous synthetic peptides MLC(3-13) (K-R-A-K-A-K-T-TK-K-R-G) and MLC(5-13) (A-K-A-K-T-T-K-K-R-G) corresponding to the amino terminal amino acid sequence of smooth muscle myosin light chain were utilized as substrates for protein kinase C purified from murine lymphosarcoma tumors to determine the role of the primary amino acid sequence of protein kinase C substrates in defining the lipid (phosphatidyl serine and diacylglycerol) requirements for the activation of the enzyme. Removal of the basic residues lysine and arginine from the amino terminus of MLC(3-13) did not have a significant effect on the Ka value of diacylglycerol. The binding of effector to calcium-protein kinase C appears to be random since binding of one effector did not block the binding of the other.
Identification and quantification of lipid metabolites in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases.
The lipid composition of cotton (Gossypium hirsutum, L) fibers was determined. Fatty acid profiles revealed that linolenate and palmitate were the most abundant fatty acids present in fiber cells. Phosphatidylcholine was the predominant lipid class in fiber cells, while phosphatidylethanolamine, phosphatidylinositol and digalactosyldiacylglycerol were also prevalent. An unusually high amount of phosphatidic acid was observed in frozen cotton fibers. Phospholipase D activity assays revealed that this enzyme readily hydrolyzed radioactive phosphatidylcholine into phosphatidic acid. A profile of expressed sequence tags (ESTs) for genes involved in lipid metabolism in cotton fibers was also obtained. This EST profile along with our lipid metabolite data was used to predict lipid metabolic pathways in cotton fiber cells.
N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase
N-Acylethanolamines (NAEs) are endogenous lipid metabolites that occur in a variety of dry seeds, and their levels decline rapidly during the first few hours of imbibition (Chapman et al., 1999, Plant Physiol., 120:1157-1164). Biochemical studies supported the existence of an NAE amidohydrolase activity in seeds and seedlings, and efforts were directed toward identification of DNA sequences encoding this enzyme. Mammalian tissues metabolize NAEs via an amidase enzyme designated fatty acid amide hydrolase (FAAH). Based on the characteristic amidase signature sequence in mammalian FAAH, a candidate Arabidopsis cDNA was identified and isolated by reverse transcriptase-PCR. The Arabidopsis cDNA was expressed in E. coli and the recombinant protein indeed hydrolyzed a range of NAEs to free fatty acids and ethanolamine. Kinetic parameters for the recombinant protein were consistent with those properties of the rat FAAH, supporting identification of this Arabidopsis cDNA as a FAAH homologue. Two T-DNA insertional mutant lines with disruptions in the Arabidopsis NAE amidohydrolase gene (At5g64440) were identified. The homozygous mutant seedlings were more sensitive than the wild type to exogenously applied NAE 12:0. Transgenic seedlings overexpressing the NAE amidohydrolase enzyme showed noticeably greater tolerance to NAE 12:0 than wild type seedlings. These results together provide evidence in vitro and in vivo for the molecular identification of Arabidopsis NAE amidohydrolase. Moreover, the plants with altered NAE amidohydrolase expression may provide new tools for improved understanding of the role of NAEs in germination and seedling growth.
Use of luminescence energy transfer probes to detect genetic variants.
The purpose of this research was to study the hybridization of molecular beacons under different conditions and designs. Data collected suggest that the inconsistency found in the emission intensity of several of these probes may be caused by 3 important factors: length of the probe, nucleotide sequence and, the formation of an alternative complex structure such as a dimer. Of all three factors, dimer formation is the most troublesome, since it reduces the emission of the reporter molecules. A new probe design was used to reduce dimer formation. The emission signal of the improved probe was several folds stronger than those probes with the early design. In this research, dimer formation is detected, furthermore a new probe with a different design was tested. If dimer formation can be reduced molecular beacons can be integrated into more complex hybridization systems providing an important tool in research and diagnosis of genetic disorders.
Studies on actomyosin crossbridge flexibility using a new single molecule assay.
Several key flexure sites exist in the muscle crossbridge including the actomyosin binding site which play important roles in the actomyosin crossbridge cycle. To distinguish between these sources of flexibility, a new single molecule assay was developed to observe the swiveling of rod about a single myosin. Myosins attached through a single crossbridge displayed mostly similar torsional characteristics compared to myosins attached through two crossbridges, which indicates that most of the torsional flexibility resides in the myosin subfragment-2, and thus the hinge between subfragment-2 and light meromyosin should contribute the most to this flexibility. The comparison of torsional characteristics in the absence and presence of ADP demonstrated a small but significant increase in twist rates for the double-headed myosins but no increase for single-headed myosins, which indicates that the ADP-induced increase in flexibility arises due to changes in the myosin head and verifies that most flexibility resides in myosin subfragment-2.
Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.
N-Acylethanolamines (NAEs) are enriched in seed-derived tissues and are believed to be formed from the membrane phospholipid, N-acylphosphatidylethanolamine (NAPE) via the action of phospholipase D (PLD). In an effort to identify a functional NAPE-PLD in cotton seeds and seedlings, we have screened a cotton seedling cDNA (cotyledon mRNA from 48 h dark grown seedlings) library with a 1.2 kb tobacco partial cDNA fragment encoding the middle third of a putative PLDβ/γ (genbank accession, AF195614) isoform. Six plaques were isolated from the Uni-ZAP lambda library, excised as pBluescript SK(-) phagemids and subjected to nucleotide sequence analysis. Alignment of derived sequences with Arabidopsis PLD family members indicated that the cDNAs represent six different PLD gene products -three putative PLD β isoforms and three putative PLD δ isoforms. The PLD β isoforms, designated Ghpldβ1a, GHpldβ1b and a truncated Ghpldβ1b isoform. Both the full-length PLD β proteins contained characteristic HKxxxxD catalytic domains, a PC-binding domain, a PIP2-binding domain and a C2 domain. In addition both cotton PLD β isoforms had a N-terminal "SPQY" rich domain which appeared to be unique to these PLDs. The three PLD δ isoforms, designated Ghpldδ1a, Ghpldδ1b and Ghpldδ1b-2 encode full-length PLDδ proteins, and like the above PLDs, contained the characteristic catalytic and regulatory domains. The expression of Ghpldδ1b showed hydrolytic and transphosphatidylation activity toward radiolabelled phosphatidylcholine (PC) but it appears Ghpldδ1b does not utilize NAPE as a substrate to produce NAEs nor does it seem to be suppressed by NAEs.
Studies on Poly (ADP-ribose) Synthesis in Lymphocytes of Systemic Lupus Erythematosus Patients
A method for assaying poly (ADP-ribose) polymerase (PADPRP) activity in lymphocytes of systemic lupus erythematosus (SLE) patients has been developed. Using this method, PADPRP activity has been studied in lymphocytes from 15 patients and 13 controls. The mean activity in SLE lymphocytes was significantly lower than that in controls and 60% of the SLE patients demonstrated activities below the minimum of the control population. Possible mechanisms for this altered metabolism were investigated. The Km app of PADPRP for NAD; size distribution, branch frequency, and rates of turnover of polymers; competition for substrate; and number of PADPRP molecules were studied. The data demonstrated that SLE lymphocytes have a decreased synthetic capacity rather than alterations in the substrate or in turnover of the product.
Regulation of an S6/H4 Kinase in Crude Lymphosarcoma P1798 Preparations
Purified S6/H4 kinase (Mr 60,000) requires autophosphorylation for activation. A rabbit anti-S6/H4 kinase peptide (SVIDPVPAPVGDSHVDGAAK) antibody recognized both the S6/H4 kinase holoenzyme and catalytic domain. Immunoreactivity with p60 kinase protein, and S6/H4 kinase activity were precisely correlated in fractions obtained from ion exchange chromatography of P1798 lymphosarcoma extracts. An enzyme which catalyzed the MgATP-dependent phosphorylation and activation of S6/H4 kinase coeluted with immunoreactivity from Mono 5, but not Mono Q chromatography. Since S6/H4 kinase is homologous with rac-activated PAK65, the observation that phosphorylation is also required for activation suggests a complex mechanism for in vivo activation of the S6/H4 kinase.
NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase from Swine Kidney: Characterization and Kinetic Mechanism
Cytoplasmic 15-hydroxyprostaglandin dehydrogenase from swine kidney was purified to specific activity of 1.2 U per mg protein, by chromatographic techniques. Native molecular weight of enzyme was estimated at 45,000. Enzyme was inhibited by sulfhydryls, diuretics, and various fatty acids. Substrate studies indicated NAD+ specificity and ability to catabolize prostaglandins, except prostaglandin B and thromboxane B. Initial velocity studies gave intersecting plots conforming to a sequential mechanism. 15-keto-prostaglandin exhibited linear noncompetitive production inhibition with respect to either prostaglandin or NAD+; NAD yielded linear competitive production inhibition with respect to NADH. Results, and those of dead-end inhibition and alternated substrate studies, are consistent with an ordered Bi-Bi mechanism: NAD+ is added first, then prostaglandin; then 15-keto-rostaglandin is released, then NADH.
Changes in Body Composition, Plasma Alanine, and Urinary Nitrogen in Rats Subjected to Negative Caloric Balance Through Diet, Diet/Exercise, and Exercise
Male Fischer rats (n=43) were used in a diet-diet/ exercise design to investigate the apparent protein sparing effects of exercise. The animals were divided into five groups: INITIAL (baseline), SEDENTARY (control), DIET, DIET/EXERCISE, and EXERCISE. Carcasses were analyzed for body composition, the blood for plasma alanine concentration and the urine for urea nitrogen concentration. The results showed no significant differences between groups in urinary urea nitrogen, plasma alanine, body weight, or carcass weights. The EXERCISE group had a significant increase in percent protein and a significant decrease in percent fat and grams of fat when compared to all other groups (p <.05).
Identification and Characterization of a Calcium/Phospholipid-Dependent Protein Kinase in P1798 Lymphosarcomas
Calcium/phospholipid-dependent protein kinase (PKC) was partially purified from P1798 lymphosarcoma. Phospholipid-dependence was specific for phosphatidylserine. PKC phosphorylated Histone 1, with an apparent K_m of 14.1 μM. Chlorpromazine, a lipid-binding drug, inhibited PKC activity by 100%. Further studies were undertaken to establish analytical conditions which could be applied to the study of PKC in intact cells. The conditions included (1) determining optimum cell concentration for measuring PKC activity, (2) recovering PKC into the soluble fraction of cell extracts, (3) evaluating calcium and phospholipid requirements of PKC in this fraction, and (4) inhibiting PKC in this fraction. Final studies involved treatment of intact cells with potential activators. Both phytohaemagglutinin and a phorbol ester increased PKC activation.
Studies on Lipoprotein Specificity of Human Plasma Lecithin Cholesterol Acyltransferase
Huian plasma high-density lipoprotein (HDL) were isolated by a procedure employing polyanion precipitation and column chromatography. Lipid and protein composition of the HDL isolated by this method was found to be similar to another HDL preparation isolated by ultracentrifugation. However, minor differences were noted, including a higher phospholipid and apoproteinE content and lower triglyceride content of the HDL isolated by column chromatography. Four subfraction of HDL were obtained following chromatography on an anion exchange column. The subfraction four had the highest esterified to free cholesterol ratio, the second highest phospholipid to unesterified cholesterol, and the lowest molecular weight. In addition it was consistently coincided with lecithin: cholesterol acyltransferase (LCAT) activity and found to be the best substrate for the enzyme.
Brainstem Gangliosides in Suddden Infant Death Syndrome
Recent studies have shown that the Sudden Infant Death Syndrome (SIDS) is related to abnormal control of respiration (Ischemic degeneration of the brainstem may play an important role in altered respiratory control leading to death). In our studies we have examined brainstem ganglioside compositions in samples derived from SIDS victims and appropriate controls. Gangliosides are acidic glycosphingolipids that contain sialic acid. The high concentration of gangliosides in the central nervous system (CNS) implies that these lipids play an important role in CNS function. Some studies have indicated that gangliosides may function as receptor site determinants or modifiers, and in neural transmission. In our studies we used the Tettamanti, et al methodology to extract gangliosides, and High Performance Thin Layer Chromatography (HPTLC) and laser densitometry techniques for ganglioside analysis. The results of these analyses are being employed to establish lipid profile patterns to determine if there are significant variations in these lipid patterns between SIDS and control groups.
pH Dependence of the Kinetic Parameters for the Oxalacetate Decarboxylation and Pyruvate Reduction Reactions Catalyzed by Malic Enzyme
Ascaris suum NAD-malic enzyme catalyzes the decarboxylation of oxalacetate and reduction of pyruvate. Thus, the present classification (E.C. 1.1.1.39) for this enzyme should be changed to E.C. 1.1.1.38. In the absence of nucleotide, both the chicken liver NADP-malic enzyme and Ascaris suum NAD-malic enzymes catalyze the decarboxylation of oxalacetate. A study of the pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction was carried out for the NAD(P)-malic enzyme with Mg^2+ and Mn^2+ in the presence and absence of nucleotide. In all cases, an enzyme residue is required in its protonated form for reaction while for oxalacetate decarboxylation the β-carboxyl of oxalacetate is required unprotonated. Of a number of inhibitory binding analogs of malate tested, oxalate is the tightest binding inhibitor for Ascaris suum enzyme.
Isolation and Characterization of Two Enzyme Proteins Catalyzing Oxido-Reduction at C-9 and C-15 of Prostaglandins from Swine Kidney
Two swine kidney proteins (PI 4.8 and 5.8) both possessing 9-prostaglandin ketoreductase (9-PGKR) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) activities were purified to homogeneity. Purification increased specific activities in parallel. Molecular weight, subunit size, amino acid composition, coenzyme and substrate specificity and antigenicity of both proteins were similar. Gel filtration and SDS-polyacrylamide gel electrophoresis molecular weights of 29,500 and 29,000, respectively, suggested a single subunit. Although a variety of prostaglandins served as substrates, the best for 15-PGDH was PGB, while PGA_1-GSH showed the lowest Km for 9-PGKR. Rabbit antibody against the PI 5.8 protein crossreacted with both purified renal enzymes and with extracts from rat spleen, lung, heart, aorta, and liver.
Purification and Studies of Methylglyoxal Reductase from Sheep Liver
The objectives of these investigations were (1) the purification of MG reductase from sheep liver and (2) studies of some of its characteristics. MG reductase was purified 40 fold and showed a single band on SDS-PAGE. Molecular weight estimations with SDS-PAGE showed a molecular weight of 44,000; although gel filtration with Sephadex G-150 gave a molecular weight of 87,000 indicating that the enzyme might be a dimer. The Km for MG is 1.42 mM and for NADH it is 0.04 mM. The pH optimum for the purified enzyme is pH 7.0. Isoelectric focusing experiments showed a pI of 9.3. In vivo experiments involving rats treated with 3,3',5-triiodothyronine (T_3) and 6-n-propyl-2-thiouracil (PTU) indicated that MG reductase was depressed by T_3 and elevated by PTU.
Gene Expression Profiling of the nip Mutant in Medicago truncatula
The study of root nodule symbiosis between nitrogen-fixing bacteria and leguminous plant species is important because of the ability to supplement fixed nitrogen fertilizers and increase plant growth in poor soils. Our group has isolated a mutant called nip in the model legume Medicago truncatula that is defective in nodule symbiosis. The nip mutant (numerous infections with polyphenolics) becomes infected by Sinorhizobium meliloti but then accumulates polyphenolic defense compounds in the nodule and fails to progress to a stage where nitrogen fixation can occur. Analysis of the transcriptome of nip roots prior to inoculation with rhizobia was undertaken using Affymetric Medicago Genome Array microarrays. The total RNA of 5-day old uninoculated seedlings was analyzed in triplicate to screen for the NIP gene based on downregulated transcript levels in the mutant as compared to wild type. Further microarray data was generated from 10 days post inoculation (dpi) nip and wild type plants. Analysis of the most highly downregulated transcripts revealed that the NIP gene was not identifiable based on transcript level. Putative gene function was assigned to transcripts with altered expression patterns in order to characterize the nip mutation phenotypically as inferred from the transcriptome. Functional analysis revealed a large number of chaperone proteins were highly expressed in the nip mutant, indicating high stress in the mutant prior to infection by rhizobia. Additionally, a database containing the information regarding the nip expression profile at both 0 days post inoculation (dpi) and 10 dpi were created for screening of candidate genes as predicted from sequence in the genomic region containing NIP.
Genetic Modification of Fatty Acid Profiles in Cotton
The industrial uses of cottonseed oil are limited by its fatty acid composition. Genetic modification of cotton lipid profiles using seed-specific promoters could allow cotton growers to produce valuable new oils in the seed without adverse effects on fiber quality and yield, therefore making this crop more commercially profitable. Transgenic cotton callus harboring a diverged fatty acid desaturase gene (FADX) from Momordica charantia was characterized for production of alpha-eleostearic acid (conjugated double bonds: 18:3 D9 cis, 11 trans, 13 trans), not normally found in cotton. Gas chromatography (GC) in conjunction with mass spectrometry (MS) confirmed production of alpha-eleostearic acid in the transgenic cotton tissues. A second series of transformation experiments introduced the cotton fatty acid thioesterase B (FATB) cDNA, fused to the seed-specific oleosin promoter into cotton to promote the over-expression of FATB, to generate cotton with increased palmitate in the cottonseed. PCR amplification, as well as fatty acid analysis by gas chromatography, confirmed introduction of the FATB cDNA in transgenic tissues. Collectively, these results demonstrate the feasibility of manipulating the fatty acid composition in cotton via transgenic approaches and form the basis for continued efforts to create novel oils in cottonseed.
The structure and function of troponin T upon metal ion binding and the detection of nucleic acid sequence variations.
Numerous troponin T (TnT) isoforms are generated by alternative RNA splicing primarily in its NH2-terminal hypervariable region, but the functions of these isoforms are not completely understood. In this dissertation work, calcium and terbium binding behavior of several forms of TnT were investigated by spectroscopic and radioactive techniques. Chicken breast muscle TnT binds calcium and terbium through its NH2-terminal Tx motif (HEEAH)n with high affinity (10-6 mM) and fast on-rate (106 - 107 M-1 s-1). Chicken leg muscle TnT and a human cardiac TnT NH2-terminal fragment, which both lack the Tx motif on their NH2-terminal regions, do not have affinities for calcium in the physiological range. Computational predictions on TnT N47 suggest that the TnT NH2-terminal region might fold into an elongated structure with at least one high affinity metal ion binding pocket comprised primarily of the Tx motif sequence and several lower affinity binding sites. In addition, calcium binding to TnT N47 might alter its conformation and flexibility. Luminescence resonance energy transfer measurements and other experimental observations are consistent with the computational predictions suggesting the computational simulated atomic model is reasonable. TnT mutations are responsible for 15% of familiar hypertrophic cardiomyopathy (FHC) cases with a phenotype of relatively mild hypertrophy, but a high incidence of sudden death. Detection of those genetic mutations would facilitate the clinical diagnosis and initiation of treatment at an early stage. This dissertation also investigated a novel hybridization proximity assay (HYPA) combining molecular beacon and luminescence resonance energy transfer (LRET) technologies. Experimental results suggest that a shared stem probe design produces a more consistent response upon hybridization, whereas the internally labeled probe was less consistent, but can yield the highest responses. Using the optimally designed molecular probes, the HYPA provides a detection of alterations in nucleic acid structure of as little as a single nucleotide. …
Function of the ENOD8 gene in nodules of Medicago truncatula.
To elaborate on the function(s) of the ENOD8 gene in the nodules of M. truncatula, several different experimental approaches were used. A census of the ENOD8 genes was first completed indicating that only ENOD8.1 (nt10554-12564 of GenBank AF463407) is highly expressed in nodule tissues. A maltose binding protein-ENOD8 fusion protein was made with an E. coli recombinant system. A variety of biochemical assays were undertaken with the MBP-ENOD8 recombinant protein expressed in E. coli, which did not yield the esterase activity observed for ENOD8 protein nodule fractions purified from M. sativa, tested on general esterase substrates, α-naphthyl acetate, and p-nitrophenylacetate. Attempts were also made to express ENOD8 in a Pichia pastoris system; no ENOD8 protein could be detected from Pichia pastoris strains which were transformed with the ENOD8 expression cassette. Additionally, it was shown that the ENOD8 protein can be recombinantly synthesized by Nicotiana benthamiana in a soluble form, which could be tested for activity toward esterase substrates, bearing resemblance to nodule compounds, such as the Nod factor. Transcription localization studies using an ENOD8 promoter gusA fusion indicated that ENOD8 is expressed in the bacteroid-invaded zone of the nodule. The ENOD8 protein was also detected in that same zone by immunolocalization. Confocal immunomicroscopy with an affinity-purified anti-ENOD8 oligopeptide antibody showed that the ENOD8 protein localizes at the interface between the plant and the bacteroid-differentiated rhizobia, in the symbiosome membrane or symbiosome space. This suggests a possible link between ENOD8 protein and bacteroid differentiation, nitrogen fixation, or plant defense. These possible functions for ENOD8 could be tested with an ENOD8-RNAi transgenic line devoid of detectable ENOD8 proteins.
FLP-mediated conditional loss of an essential gene to facilitate complementation assays
Commonly, when it is desirable to replace an essential gene with an allelic series of mutated genes, or genes with altered expression patterns, the complementing constructs are introduced into heterozygous plants, followed by the selection of homozygous null segregants. To overcome this laborious and time-consuming step, the newly developed two-component system utilizes a site-specific recombinase to excise a wild-type copy of the gene of interest from transformed tissues. In the first component (the first vector), a wild-type version of the gene is placed between target sequences recognized by FLP recombinase from the yeast 2 μm plasmid. This construct is transformed into a plant heterozygous for a null mutation at the endogenous locus, and progeny plants carrying the excisable complementing gene and segregating homozygous knockout at the endogenous locus are selected. The second component (the second vector) carries the experimental gene along with the FLP gene. When this construct is introduced, FLP recombinase excises the complementing gene, leaving the experimental gene as the only functional copy. The FLP gene is driven by an egg apparatus specific enhancer (EASE) to ensure excision of the complementing cDNA in the egg cell and zygote following floral-dip transformation. The utility of this system is being tested using various experimental derivatives of the essential sucrose-proton symporter, AtSUC2, which is required for photoassimilate transport.
Noncovalent Crosslinking of SH1 and SH2 to Detect Dynamic Flexibility of the SH1 Helix
In this experiment, fluorescent N- (1-pyrenyl) iodoacetamide modified the two reactive thiols, SH1 (Cys 707) and SH2 (Cys 697) on myosin to detect SH1-SH2 a -helix melting. The excimer forming property of pyrene is well suited to monitor the dynamics of the SH1 and SH2 helix melting, since the excimer should only form during the melted state. Decreased anisotropy of the excimer relative to the monomeric pyrene fluorescence is consistent with the disordering of the melted SH1-SH2 region in the atomic model. Furthermore, nucleotide analogs induced changes in the anisotropy of the excimer, suggesting that the nucleotide site modulates the flexibility of SH1-SH2 region.
Identification and Characterization of an Arabidopsis thaliana Mutant with Tolerance to N-lauroylethanolamine
N-Acylethanolamines (NAEs) are fatty acid derivatives in plants that negatively influence seedling growth. N-Lauroylethanolamine (NAE 12:0), one type of NAE, inhibits root length, increases radial swelling of root tips and reduces root hair numbers in a dose dependent manner in Arabidopis thaliana L. (ecotype Columbia). A forward genetics approach was employed by screening a population of T-DNA “activation-tagged” developed by the Salk Institute lines for NAE resistance to identify potential genes involved in NAE signaling events in Arabidopsis thaliana L. (ecotype Columbia). Seeds of the activation tagged lines were grown at 0, 25, 30, 50, 75 and 100 µM N-lauroylethanolamime (NAE 12:0). Ten plants which displayed NAE tolerance (NRA) seedling phenotypes, compared with wildtype (Columbia, Col-0) seedlings were identified. I focused on one mutant line, identified as NRA 25, where the tolerance to NAE 12:0 appears to be mediated by a single dominant, nuclear gene. Thermal asymmetric interlaced (TAIL) PCR identified the location of the T-DNA insert as 3.86 kbp upstream of the locus At1g68510. Quantitative PCR indicated that the transcript level corresponding to At1g68510 is upregulated approximately 20 fold in the mutant relative to wildtype. To determine whether the NAE tolerance in NRA 25 is associated with overexpression of At1g68510 I created overexpressing lines of At1g68510 with and without GFP fusions behind the 2X35S CaMV promoter. As predicted, results with overexpressing lines of At1g68510 also exhibited enhanced resistance to NAE when compared with the wildtype. Confocal images of the fusion proteins suggest that GFP-At1g68510 is concentrated in the nucleus and this was confirmed by counterstaining with 4', 6-Diamidino-2-phenylindol (DAPI). Futhermore, At1g68510 overexpressing lines and NRA 25 line also exhibited tolerance to abscisic acid (ABA) during seedling germination. The findings suggests that At1g68510 overexpression mediates seedling tolerance to both ABA and NAE, a mechanism independent of fatty acid amide hydrolase …
Manipulating Sucrose Proton Symporters to Understand Phloem Loading
Phloem vascular tissues transport sugars synthesized by photosynthesis in mature leaves by a process called phloem loading in source tissues and unloading in sink tissues. Phloem loading in source leaves is catalyzed by Suc/H+ symporters (SUTs) which are energized by proton motive force. In Arabidopsis the principal and perhaps exclusive SUT catalyzing phloem loading is AtSUC2. In mutant plants harboring a T-DNA insertion in each of the functional SUT-family members, only Atsuc2 mutants demonstrate overtly debilitated phloem transport. Analysis of a mutant allele (Atsuc2-4) of AtSUC2 with a T-DNA insertion in the second intron showed severely stunted phenotype similar to previously analyzed Atsuc2 null alleles. However unlike previous alleles Atsuc2-4 produced viable seeds. Analysis of phloem specific promoters showed that promoter expression was regulated by Suc concentration. Unlike AtSUC2p, heterologous promoter CoYMVp was not repressed under high Suc conc. Further analysis was conducted using CoYMVp to test the capacity of diverse clades in SUT-gene family for transferring Suc in planta in Atsuc2 - / - mutant background. AtSUC1 and ZmSUT1 from maize complemented Atsuc2 mutant plants to the highest level compared to all other transporters. Over-expression of the above SUTs in phloem showed enhanced Suc loading and transport, but against expectations, plants were stunted. The implications of SUT over-expression to enhance phloem transport and loading are discussed and how it induces a perception of phosphate imbalance is presented.
Molecular and Functional Characterization of Medicago Truncatula Npf17 Gene
Legumes are unique among plants for their ability to fix atmospheric nitrogen with the help of soil bacteria rhizobia. Medicago truncatula is used as a model legume to study different aspects of symbiotic nitrogen fixation. M. truncatula, in association with its symbiotic partner Sinorhizobium meliloti, fix atmospheric nitrogen into ammonia, which the plant uses for amino acid biosynthesis and the bacteria get reduced photosynthate in return. M. truncatula NPF1.7 previously called MtNIP/LATD is required for symbiotic nitrogen fixing root nodule development and for normal root architecture. Mutations in MtNPF1.7 have defects in these processes. MtNPF1.7 encodes a member of the NPF family of transporters. Experimental results showing that MtNPF1.7 functioning as a high-affinity nitrate transporter are its expression restoring chlorate susceptibility to the Arabidopsis chl1-5 mutant and high nitrate transport in Xenopus laevis oocyte system. However, the weakest Mtnip-3 mutant allele also displays high-affinity nitrate transport in X. laevis oocytes and chlorate susceptibility to the Atchl1-5 mutant, suggesting that MtNPF1.7 might have another biochemical function. Experimental evidence shows that MtNPF1.7 also functions in hormone signaling. Constitutive expression of MtNPF1.7 in several species including M. truncatula results in plants with a robust growth phenotype. Using a synthetic auxin reporter, the presence of higher auxin in both the Mtnip-1 mutant and in M. truncatula plants constitutively expressing MtNPF1.7 was observed. Previous experiments showed MtNPF1.7 expression is hormone regulated and the MtNPF1.7 promoter is active in root and nodule meristems and in the vasculature. Two potential binding sites for an auxin response factors (ARFs) were found in the MtNPF1.7 promoter. Chromatin immunoprecipitation-qRT-PCR confirmed MtARF1 binding these sites. Mutating the MtARF1 binding sites increases MtNPF1.7 expression, suggesting a mechanism for auxin repression of MtNPF1.7. Consistent with these results, constitutive expression of an ARF in wild-type plants partially phenocopies Mtnip-1 mutants’ phenotypes.
Development of Enabling Technologies to Visualize the Plant Lipidome
Improvements in mass spectrometry (MS)-based strategies for characterizing the plant lipidome through quantitative and qualitative approaches such as shotgun lipidomics have substantially enhanced our understanding of the structural diversity and functional complexity of plant lipids. However, most of these approaches require chemical extractions that result in the loss of the original spatial context and cellular compartmentation for these compounds. To address this current limitation, several technologies were developed to visualize lipids in situ with detailed chemical information. A subcellular visualization approach, direct organelle MS, was developed for directly sampling and analyzing the triacylglycerol contents within purified lipid droplets (LDs) at the level of a single LD. Sampling of single LDs demonstrated seed lipid droplet-to-droplet variability in triacylglycerol (TAG) composition suggesting that there may be substantial variation in the intracellular packaging process for neutral lipids in plant tissues. A cellular and tissue visualization approach, MS imaging, was implemented and enhanced for visualizing the lipid distributions in oilseeds. In mature cotton seed embryos distributions of storage lipids (TAGs) and their phosphatidylcholine (PCs) precursors were distribution heterogeneous between the cotyledons and embryonic axis raising new questions about extent and regulation of oilseed heterogeneity. Extension of this methodology provides an avenue for understanding metabolism in cellular (perhaps even subcellular) context with substantial metabolic engineering implications. To visualize metabolite distributions, a free and customizable application, Metabolite Imager, was developed providing several tools for spatially-based chemical data analysis. These tools collectively enable new forms of visualizing the plant lipidome and should prove valuable toward addressing additional unanswered biological questions.
Functional Characterization of Mtnip/latd’s Biochemical and Biological Function
Symbiotic nitrogen fixation occurs in plants harboring nitrogen-fixing bacteria within the plant tissue. The most widely studied association is between the legumes and rhizobia. In this relationship the plant (legumes) provides the bacteria (rhizobia) with reduced carbon derived from photosynthesis in exchange for reduced atmospheric nitrogen. This allows the plant to survive in soil, which is low in available of nitrogen. Rhizobia infect and enter plant root and reside in organs known as nodules. In the nodules the bacteria fix atmospheric nitrogen. The association between the legume, Medicago truncatula and the bacteria Sinorhizobium meliloti, has been studied in detail. Medicago mutants that have defects in nodulation help us understand the process of nitrogen fixation better. One such mutant is the Mtnip-1. Mtnip-1 plants respond to S. meliloti by producing abnormal nodules in which numerous aberrant infection threads are produced, with very rare rhizobial release into host plant cells. The mutant plant Mtnip-1 has an abnormal defense-like response in root nodules as well as defects in lateral root development. Three alleles of the Mtnip/latd mutants, Mtnip-1, Mtlatd and Mtnip-3 show different degrees of severity in their phenotype. Phylogenetic analysis showed that MtNIP/LATD encodes a protein belonging to the NRT1(PTR) family of nitrate, peptide, dicarboxylate and phytohprmone transporters. Experiments with Mtnip/latd mutants demonstrats a defective nitrate response associated with low (250 μM) external nitrate concentration rather than high (5 mM) nitrate concentration. This suggests that the mutants have defective nitrate transport. To test if MtNIP/LATD was a nitrate transporter, Xenopus laevis oocytes and Arabidopsis thaliana mutant plants Atchl1-5, defective in a major nitrate transporter AtNRT1.1(CHL1), were used as surrogate expression systems. Heterologous expression of MtNIP/LATD in X. laevis oocytes and Atchl1-5 mutant plants conferred on them the ability to take up nitrate from external media with high affinity, thus demonstrating that MtNIP/LATD …
Manipulations of Sucrose/Proton Symporters and Proton-pumping Pyrophosphatase Lead to Enhanced Phloem Transport But Have Contrasting Effects on Plant Biomass
Delivery of photoassimilate, mainly sucrose (Suc) from photoautotrophic source leaves provides the substrate for the growth and maintenance of sink tissues such as roots, storage tissues, flowers and fruits, juvenile organs, and seeds. Phloem loading is the energized process of accumulating solute in the sieve element/companion cell complex of source leaf phloem to generate the hydrostatic pressure that drives long-distance transport. In many plants this is catalyzed by Suc/Proton (H+) symporters (SUTs) which are energized by the proton motive force (PMF). Overexpression of SUTs was tested as means to enhance phloem transport and plant productivity. Phloem specific overexpression of AtSUC2 in wild type (WT) tobacco resulted in enhanced Suc loading and transport, but against the hypothesis, plants were stunted and accumulated carbohydrates in the leaves, possibly due to lack of sufficient energy to support enhanced phloem transport. The energy for SUT mediated phloem loading is provided from the PMF, which is ultimately supplied by the oxidation of a small proportion of the loaded photoassimilates. It was previously shown that inorganic pyrophosphate (PPi) is necessary for this oxidation and overexpressing a proton-pumping pyrophosphatase (AVP1) enhanced both shoot and root growth, and augmented several energized processes like nutrient acquisition and stress responses. We propose that AVP1 localizes to the PM of phloem cells and uses PMF to synthesize PPi rather than hydrolyze it, and in doing so, maintains PPi levels for efficient Suc oxidation and ATP production. Enhanced ATP production in turn strengthens the PMF via plasma membrane (PM) ATPase, increasing phloem energization and phloem transport. Phloem-specific and constitutive AVP1 overexpressing lines showed increased growth and more efficiently moved carbohydrates to sink organs compared to WT. This suggested changes in metabolic flux but diagnostic metabolites of central metabolism did not show changes in steady state levels. This research focuses on fundamental aspects …
Luminescence Resonance Energy Transfer-Based Modeling of Troponin in the Presence of Myosin and Troponin/Tropomyosin Defining Myosin Binding Target Zones in the Reconstituted Thin Filament
Mechanistic details on the regulation of striated muscle contraction still need to be determined, particularly the specific structural locations of the elements comprising the thick and thin filaments. Of special interest is the location of the regulatory component, troponin, on the actin filament and how its presence influences the behavior of myosin binding to the thin filament. In the present study: (1) Luminescence resonance energy transfer was used to monitor potential conformational changes in the reconstituted thin filament between the C-terminal region of troponin T and myosin subfragment 1; (2) Location of troponin in previously derived atomic models of the acto-myosin complex was mapped to visualize specific contacts; and (3) Shortened tropomyosin was engineered and protein binding and ATPase assays were performed to study the effect of myosin binding close to the troponin complex. Analysis of the results suggest the following: (1) Irrespective of calcium levels, the C-terminal region of troponin T is located close to myosin loop 3 and a few actin helices that may perturb strong acto-myosin interactions responsible for force production. (2) Atomic models indicate myosin subfragment 1 cannot attain the post- powerstroke state due to the full motion of the lever arm being sterically hindered by troponin. (3) A shortened tropomyosin with five actin binding modules (instead of the native seven in muscle cells) binds actin contiguously in a head-to-tail manner and serves to increase the periodicity of troponin complexes on the actin filament. Such behavior eliminates the structure of the actin filament being responsible for the binding location of tropomyosin. (4) Differential behavior of myosin subfragment 1 i.e. (a) binding adjacent to troponin and (b) binding further away from troponin, is apparent as tropomyosin and troponin appear to govern the regions or "target zones" where myosin can bind productively along the actin filament. Physiologically, myosins …
Purification and Characterization of a Differentiation Factor From Rat Lung Conditioned Medium
A Differentiation Factor (DF) was purified from rat lung conditioned medium by a four-steps procedure. The DF has a molecular weight of 27000, and an isoelectric point of 4.70. Although DF is stable up to 60°C, it is sensitive to digestion by trypsin, chymotrypsin and subtilisin. DF forms granulocyte colonies in soft agar. Studies using anti-NRK CSF antibody demonstrated that DF is distinct from GM-CSF.
Functional Significance of Sympathetic Fiber Ingrowth in the Habenula
The physiological significance of noradrenergic sympathohabenular ingrowth following medial septal lesions was investigated. Following septal lesions, sympathetic fibers originating in the superior cervical ganglia are known to sprout into the medial habenular nuclei, and into the hippocampal formation. Previous work involving sympathohippocampal ingrowth showed that firing rates in septal animals with no ingrowth showed that firing rates in septal animals with no ingrowth were higher than rates of septal animals with ingrowth and controls. Those results suggested that sympathetic ingrowth in the hippocampus had some functional capability in a modulatory manner. The primary aim of the present study was to determine if the peripheral sympathetic ingrowth into the medial habenular nuclei following a septal lesion is functionally significant. The results showed that firing rates of neurons of the medial habenulae in animals receiving septal lesions were significantly higher than rates of control animals and septal lesioned + ganglionectomized animals.
A Rapid, Accurate Thin Layer Chromatographic Analysis of Phospholipids and Neutral Lipids
A modified ascending thin layer chromatographic technique has been developed which resolves the major phospholipid and neutral lipid classes of five common fluids and tissues. A one-half milliliter sample is extracted with n-butanol:diisopropylether (40:60 by volume, cholesteryl acetate = 100 ng/ul) for thirty minutes and the organic phase is spotted onto a thin layer chromatography plate and carried through three successive chromatographic developments. The lipids are then visualized either by charring with ammonium bisulfate or staining with phosphomolybdic acid. The use of cholesteryl acetate as an internal standard enables quantitation of the phospholipids and neutral lipid classes. This method may be a very valuable, new technique for research and clinical laboratories.
Colony-Stimulating Factor from Umbilical Cord Endothelial Cells
Conditioned media prepared from umbilical cord (UC) segments or endothelial cells (EC) contain colony stimulating activity, Both UCCM and ECCM were partially purified by DEAE-Sepharose and ACA44 gel filtration chromatography. The molecular weights were estimated as 25,000 and 31,000 for UC-CSF and EC-CSF, respectively. UC-CSF was further fractionated by Con A Sepharose, IEF and HPLC on a hydrophobic phenyl column. The highly purified CSF stimulates human macrophage and granulocyte colony formation, indicating it is GM-CSF in nature. Characterization studies have revealed that both CSFs are heat stable at 60°C for 30 min. They are sensitive to digestion by protease and to periodate oxidation but are stable to treatment with sulfhydryl reagents. The synthesis of CSF in endothelial cells is inhibited by actinomycin D, cycloheximide and puromycin, indicating that protein and RNA synthesis are required for CSF production. Among the mitogens tested, only LPS exhibited stimulatory activity on the production of CSF. Metabolic modulators such as dibutyryl cAMP, isobutylmethylxanthine, PGE2 and lactoferrin inhibit CSF production, while PGF2 enhances CSF production.
Induced CSF-1 Production and its Effects on C-FMS Transfected Monoblastic U937 Cells
This study examined how the monoblast-like human histiocytic lymphoma cell line U937 can be induced by phorbol 12-myristrate 13-acetate (PMA) to undergo differentiation. In order to study the mechanism of action of CSF-1, a CSF-1 receptor gene (c-fms) was transfected into U937 cells. Exogenous CSF-1 treatment induced an autocrine response in this CSF-1 was determined and all events were shown to be time dependent. CSF-1 stimulation also enhanced proto-oncogene c-jun and c-myc gene expression. Complementary DNA coding for Jun or Fos was introduced into U937 cells by transfection. The transfection did not generate a high level of CSF-1 gene expression which suggests that Fos and Jun alone are insufficient to induce CSF-1 synthesis.
Studies on Poly(ADP-ribose) Metabolism and Chromatin Structure
In these studies, a procedure which allowed the in vivo labeling and detection of poly(ADP-ribose) was combined with nuclear fractionation techniques to analyze the nuclear distribution of ADP-ribose polymers. The results from these studies suggest the occurrence of poly(ADP-ribose) metabolism in two compartments of chromatin; one that is nuclear matrix-associated and one that is not. The biological significance of this compartmentalization is conceptualization in a model. This model postulates that, under some physiological conditions, poly(ADP-ribose) metabolism accomplishes the reversible targeting of specific regions of chromatin to the nuclear matrix domain by modulating DNA-protein and or protein-protein interactions.
Occurrence and Structure of an Activating Enzyme for an S6 Kinase Determined by Monoclonal Antibody Analysis
In this study, the production of monoclonal antibodies directed against the activating enzyme for an S6 kinase is examined and described. Evidence is presented for the association of an Mr. 55,000 abd Mr. 95,000 protein with the s6 kinase. These proteins are phosphorylated in the presence of Activating Enzyme. A sequence of regulatory events for insulin-stimulated phosphorylation of ribosomal protein S6 in cells is postulated as follows: insulin activates the receptor tyrosine kinase, which phosphorylates the Mr 116,000 subunit of Activating Enzyme. The Activating Enzyme then activates the S6 kniase by phosphorylation, and phosphorylation of the ribosomal protein s6 is promoted.
Identifying genetic interactions of the spindle checkpoint in Caenorhabditis elegans.
Faithful segregation of chromosomes is ensured by the spindle checkpoint. If a kinetochore does not correctly attach to a microtubule the spindle checkpoint stops cell cycle progression until all chromosomes are attached to microtubules or tension is experienced while pulling the chromosomes. The C. elegans gene, san-1, is required for spindle checkpoint function and anoxia survival. To further understand the role of san-1 in the spindle checkpoint, an RNAi screen was conducted to identify genetic interactions with san-1. The kinetochore gene hcp-1 identified in this screen, was known to have a genetic interaction with hcp-2. Interestingly, san-1(ok1580);hcp-2(ok1757) had embryonic and larval lethal phenotypes, but the phenotypes observed are less severe compared to the phenotypes of san-1(ok1580);hcp-1(RNAi) animals. Both san-1(ok1580);hcp-1(RNAi) and san-1(ok1580);hcp-2(RNAi) produce eggs that may hatch; but san-1(ok1580):hcp-1(RNAi) larvae do not survive to adulthood due to defects caused by aberrant chromosome segregations during development. Y54G9A.6 encodes the C. elegans homolog of bub-3, and has spindle checkpoint function. In C.elegans, bub-3 has genetic interactions with san-1 and mdf-2. An RNAi screen for genetic interactions with bub-3 identified that F31F6.3 may potentially have a genetic interaction with bub-3. This work provided genetic evidence that hcp-1, hcp-2 and F31F6.2 interact with spindle checkpoint genes.
NSAID effect on prostanoids in fishes: Prostaglandin E2 levels in bluntnose minnows (Pimephales notatus) exposed to ibuprofen.
Prostanoids are oxygenated derivatives of arachidonic acid with a wide range of physiological effects in vertebrates including modulation of inflammation and innate immune responses. Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibition of cyclooxygenase (COX) conversion of arachidonic acid to prostanoids. In order to better understand the potential of environmental NSAIDS for interruption of normal levels COX products in fishes, we developed an LC/MS/MS-based approach for tissue analysis of 7 prostanoids. Initial studies examining muscle, gut and gill demonstrated that prostaglandin E2 (PGE2) was the most abundant of the measured prostanoids in all tissues and that gill tissue had the highest and most consistent concentrations of PGE2. After short-term 48-h laboratory exposures to concentrations of 5, 25, 50 and 100 ppb ibuprofen, 50.0ppb and 100.0 ppb exposure concentrations resulted in significant reduction of gill tissue PGE2 concentration by approximately 30% and 80% respectively. The lower exposures did not result in significant reductions when compared to unexposed controls. Measured tissue concentrations of ibuprofen indicated that this NSAID had little potential for bioaccumulation (BCF 1.3) and the IC50 of ibuprofen for inhibition of PGE2 production in gill tissue was calculated to be 0.4 µM. Short-term laboratory exposure to ibuprofen did not result in significant alteration of concentrations of PGE2 at environmentally relevant concentrations.
Identification of Three Symbiosome Targeting Domains in the MtENOD8 Protein and Cell-to-cell MtENOD8 mRNA Movement in Nodules
The model legume, Medicago truncatula, is able to enter into a symbiotic relationship with soil bacteria, known as rhizobia. This relationship involves a carbon for nitrogen exchange in which the plant provides reduced carbon from photosynthesis in exchange for reduced, or “fixed” atmospheric nitrogen, which allows the plant to thrive in nitrogen depleted soils. Rhizobia infect and enter plant root organs, known as nodules, where they reside inside the plant cell in a novel organelle, known as the symbiosome where nitrogen fixation occurs. the symbiosome is enriched in plant proteins, however, little is known about the mechanisms that direct plant proteins to the symbiosome. Using the M. truncatula ENOD8 (MtENOD8) protein as a model to explore symbiosome protein targeting, 3-cis domains were identified within MtENOD8 capable of directing green fluorescent protein (GFP) to the symbiosome, including its N-terminal signal peptide (SP). the SP delivered GFP to the vacuole in the absence of nodules suggesting that symbiosome proteins share a common targeting pathway with vacuolar proteins. a time course analysis during nodulation indicated that there is a nodule specific redirection of MtENOD8-SP from the vacuole to the symbiosome in a MtNIP/LATD dependent manner. GFP expression by the MtENOD8 promoter revealed spatial discrepancy between promoter activity and protein localization. in situ localization of MtENOD8 mRNA showed localization to infected cells, where the protein is found, suggesting mRNA cell-to-cell movement. Expression of MtENOD8 in Arabidopsis showed that the SP did not direct GFP to the vacuole indicating that vacuolar targeting of MtENOD8’s SP may be legume specific. Taken together, the research presented here indicates that the MtENOD8 symbiosome protein has evolved redundant domains for targeting, which has part of a common pathway with vacuolar proteins. Observed spatial discrepancy between the MtENOD8 promoter and protein shows additional mechanisms of gene regulation through cell-to-cell mRNA …
The Relationship of Force on Myosin Subfragment 2 Region to the Coiled-Coiled Region of the Myosin Dimer
The stability of myosin subfragment 2 was analyzed using gravitational force spectroscopy. The region was found to destabilize under physiological force loads, indicating the possibility that subfragment 2 may uncoil to facilitate actin binding during muscle contraction. As a control, synthetic cofilaments were produced to discover if the observations in the single molecule assay were due to the lack of the stability provided by the thick filament. Statistically, there was no difference between the single molecule assay data and the synthetic cofilament assay data. Thus, the instability of the region is due to intrinsic properties within subfragment 2.
Proteomic Responses in the Gill of Zebrafish Following Exposure to Ibuprofen and Naproxen
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most abundant environmental pharmaceutical contaminants. In this study, a proteomic analysis was conducted to identify proteins differentially expressed in gill tissue of zebrafish (Danio rerio) after a 14-day exposure to the NSAIDs ibuprofen or naproxen. A total of 104 proteins with altered expression as indicated by 2-dimensional electrophoresis were analyzed by liquid chromatography with ion trap mass spectrometry (MS/MS). A total of 14 proteins fulfilled our requirements for identification which included consistency among replicate gels as well as successful MS/MS ion searches with the MASCOT database. The most prominent feature of the differential protein expression observed after NSAID exposure was an up-regulation of proteins belonging to the globin family which are involved in the transport of oxygen from gills and availability of heme molecules required for synthesis of cyclooxygenase. Differential expression was observed at exposure concentrations as low as 1-10 µg/L indicating that altered gene expression may occur in fish subjected to environmentally realistic levels of NSAID exposure.
Evidence for Multiple Functions of a Medicago Truncatula Transporter
Legumes play an important role in agriculture as major food sources for humans and as feed for animals. Bioavailable nitrogen is a limiting nutrient for crop growth. Legumes are important because they can form a symbiotic relationship with soil bacteria called rhizobia that results in nitrogen-fixing root nodules. In this symbiosis, rhizobia provide nitrogen to the legumes and the legumes provide carbon sources to the rhizobia. The Medicago truncatula NPF1.7/NIP/LATD gene is essential for root nodule development and also for proper development of root architecture. Work in our lab on the MtNPF1.7/MtNIP/LATD gene has established that it encodes a nitrate transporter and strongly suggests it has another function. Mtnip-1/latd mutants have pleiotropic defects, which are only partially explained by defects in nitrate transport. MtNPF1.7/NIP/LATD is a member of the large and diverse NPF/NRT1(PTR) transporter family. NPF/NRT1(PTR) members have been shown to transport other compounds in addition to nitrate: nitrite, amino acids, di- and tri-peptides, dicarboxylates, auxin, abscisic acid and glucosinolates. In Arabidopsis thaliana, the AtNPF6.3/NRT1.1( CHL1) transporter was shown to transport auxin as well as nitrate. Atchl1 mutants have defects in root architecture, which may be explained by defects in auxin transport and/or nitrate sensing. Considering the pleiotropic phenotypes observed in Mtnip-1/latd mutant plants, it is possible that MtNPF1.7/NIP/LATD could have similar activity as AtNPF6.3/NRT1.1(CHL1). Experimental evidence shows that the MtNPF1.7/NIP/LATD gene is able to restore nitrate-absent responsiveness defects of the Atchl1-5 mutant. The constitutive expression of MtNPF1.7/NIP/LATD gene was able to partially, but not fully restore the wild-type phenotype in the Atchl1-5 mutant line in response to auxin and cytokinin. The constitutive expression of MtNPF1.7/NIP/LATD gene affects the lateral root density of wild-type Col-0 plants differently in response to IAA in the presence of high (1mM) or low (0.1 mM) nitrate. MtNPF1.7/NIP/LATD gene expression is not regulated by nitrate …
A Quantitative Radioimmunoassay for Phosphoglucose Isomerase and Its Utilization in Detecting Cross-Reactive Material in Variant Forms of Phosphoglucose Isomerase and in Human Tissues
A method for purification and radiolabelling phosphoglucose isomerase was devised in order to develop a sensitive quantitative radioimmunoassay for the detection of the enzyme irrespective of its catalytic activity. For four genetic variants of PGI no difference in the molecular specific activity was observed. In one variant (PGI-Denton), liver and heart tissue extracts, and in mature erythrocytes (as compared to normal erythrocytes), a decreased molecular specific activity was observed which initially may imply that these samples contain cross-reactive material which is not catalytically active.
Evidence for the Interaction of GTP with Rat Liver Glyoxalase II
Glyoxalase 11, the second enzyme of the glyoxalase system, hydrolyzes S-D-lactoylglutathione (SLG) to regenerate glutathione (GSH) and liberate free D-lactate. It was found that GTP binds with Gil from rat liver and inhibits Gil activity. Preincubation experiments showed that the binding is relatively tight, since more than 15 minutes are required to release GTP from the complex following dilution. Inhibition kinetics studies indicate that GTP is a "partially competitive inhibitor"; Thus, it would appear that the binding sites for substrate (SLG) and inhibitor (GTP) are different, but spatially close. Glyoxalase 11 binds to a GTP affinity medium, and with polyacrylamide gel electrophoresis, Gil has a higher relative mobility when GTP is present (ATP has no effect). The functional consequences of GTP binding with a specific site on Gil are still unclear. It is speculated that Gil may interact with tubulin by serving as a dissociable GTP carrier, delivering GTP to the tubulinGTP binding site, and thus facilitating tubulin polymerization.
Characterization of Human Glucose-6-Phosphate Isomerase of Different Sizes
Glucose phosphate isomerase (GPI) was purified from human placenta utilizing cross-linked spherical particle phosphocellulose. In three steps, GPI could be purified approximately 5500 fold with greater than 50% recovery. The purified enzyme exhibited four bands upon non-denaturing PAGE and isoelectric focusing (IEF) when stained with GPI specific activity stain. The four isozymes were isolated by preparative IEF. The isoelectric points of the isozymes were determined. Sodium dodecyl sulfate (SDS) gel electrophoresis showed two types of subunits with different molecular weights. Structural analyses showed both types of subunits had blocked amino termini. Other properties of the isozymes and subunits, including immunological reactivity, pH stability, peptide mapping and amino acid composition, were also established.
Metabolism of Diadenosine-5ʹ,5ʹʹʹ-P¹,P⁴-tetraphosphate (Ap₄A) in Cultured Mammalian Cells
Methodology was developed which allowed the rapid and routine quantitation of subpicomole quantities of diadenosine-5ʹ,5ʹʹʹ-P¹,P⁴-tetraphosphate (Ap₄A) in cultured mammalian cells. This methodology includes the rapid extraction of cellular nucleotides in cold alkali, resolution of Ap₄A from the bulk of cellular materials on a highly specific boronate affinity resin, and quantitation of the dinucleotide in a coupled bioluminescence assay utilizing venom phosphodiesterase and firefly luciferase. The sensitivity and selectivity of this assay is demonstrated and contrasted with previously developed techniques. This assay was used to examine the role of Ap₄A in DNA replication and the cellular stress response.
Poly(ADP-ribose) Synthesis as a Function of Growth and DNA Fragmentation
This work examines the synthesis of poly(ADP-ribose) in normal and SV40-transformed monolayer cultures of 3T3 cells as a function of growth and DNA fragmentation. A review of the relevant literature is given in the introduction of this work. Poly(ADP-ribose) synthesis has been implicated in transcription, replication, repair, differentiation and regulation of cell growth. The results of this study suggest that poly(ADP-ribose) synthesis is involved in some aspect of cell-growth control and DNA repair.
Back to Top of Screen