You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Materials Science and Engineering
Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Date: May 2005
Creator: Strauss, William C.
Description: Polystyrene (PS) nanocomposite foams were prepared using supercritical fluid (SCF) CO2 as a solvent and blowing agent. PS was first in-situ polymerized with a range of concentrations of montmorillonite layered silicate (MLS). The polymerized samples were then compression molded into 1 to 2mm thick laminates. The laminates were foamed in a batch supercritical CO2 process at various temperatures and pressures from 60°-85°C and 7.6-12MPa. The resulting foams were analyzed by scanning electron microscopy to determine effect of MLS on cellular morphology. Differential scanning calorimetry was used to determine the impact of nanocomposite microstructure on glass transition of the foamed polymer. X-ray diffraction spectra suggested that the PS/MLS composite had an intercalated structure at both the 1% and 3% mixtures, and that the intercalation may be enhanced by the foaming process.
Contributing Partner: UNT Libraries
Low Temperature Polymeric Precursor Derived Zinc Oxide Thin Films

Low Temperature Polymeric Precursor Derived Zinc Oxide Thin Films

Date: December 2006
Creator: Choppali, Uma
Description: Zinc oxide (ZnO) is a versatile environmentally benign II-VI direct wide band gap semiconductor with several technologically plausible applications such as transparent conducting oxide in flat panel and flexible displays. Hence, ZnO thin films have to be processed below the glass transition temperatures of polymeric substrates used in flexible displays. ZnO thin films were synthesized via aqueous polymeric precursor process by different metallic salt routes using ethylene glycol, glycerol, citric acid, and ethylene diamine tetraacetic acid (EDTA) as chelating agents. ZnO thin films, derived from ethylene glycol based polymeric precursor, exhibit flower-like morphology whereas thin films derived of other precursors illustrate crack free nanocrystalline films. ZnO thin films on sapphire substrates show an increase in preferential orientation along the (002) plane with increase in annealing temperature. The polymeric precursors have also been used in fabricating maskless patterned ZnO thin films in a single step using the commercial Maskless Mesoscale Materials Deposition system.
Contributing Partner: UNT Libraries
Mechanical behavior and performance of injection molded semi-crystalline polymers.

Mechanical behavior and performance of injection molded semi-crystalline polymers.

Access: Use of this item is restricted to the UNT Community.
Date: August 2003
Creator: Simoes, Ricardo J. F.
Description: I have used computer simulations to investigate the behavior of polymeric materials at the molecular level. The simulations were performed using the molecular dynamics method with Lennard-Jones potentials defining the interactions between particles in the system. Significant effort was put into the creation of realistic materials on the computer. For this purpose, an algorithm was developed based on the step-wise polymerization process. The resulting computer-generated materials (CGMs) exhibit several features of real materials, such as molecular weight distribution and presence of chain entanglements. The effect of the addition of a liquid crystalline (LC) phase to the flexible matrix was also studied. The concentration and distribution of the second phase (2P) were found to influence the mechanical and tribological properties of the CGMs. The size of the 2P agglomerates was found to have negligible influence on the properties within the studied range. Moreover, although the 2P reinforcement increases the modulus, it favors crack formation and propagation. Regions of high LC concentration exhibit high probability of becoming part of the crack propagation path. Simulations of the tensile deformation under a uniaxial force have shown that the molecular deformation mechanisms developing in the material depend on several variables, such as the magnitude of ...
Contributing Partner: UNT Libraries
Materials properties of ruthenium and ruthenium oxides thin films for advanced electronic applications.

Materials properties of ruthenium and ruthenium oxides thin films for advanced electronic applications.

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Lim, ChangDuk
Description: Ruthenium and ruthenium dioxide thin films have shown great promise in various applications, such as thick film resistors, buffer layers for yttrium barium copper oxide (YBCO) superconducting thin films, and as electrodes in ferroelectric memories. Other potential applications in Si based complementary metal oxide semiconductor (CMOS) devices are currently being studied. The search for alternative metal-based gate electrodes as a replacement of poly-Si gates has intensified during the last few years. Metal gates are required to maintain scaling and performance of future CMOS devices. Ru based materials have many desirable properties and are good gate electrode candidates for future metal-oxide-semiconductor (MOS) device applications. Moreover, Ru and RuO2 are promising candidates as diffusion barriers for copper interconnects. In this thesis, the thermal stability and interfacial diffusion and reaction of both Ru and RuO2 thin films on HfO2 gate dielectrics were investigated using Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). An overview of Ru and RuO2/HfO2 interface integrity issues will be presented. In addition, the effects of C ion modification of RuO2 thin films on the physico-chemical and electrical properties are evaluated.
Contributing Partner: UNT Libraries
Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Access: Use of this item is restricted to the UNT Community.
Date: August 2006
Creator: Ukirde, Vaishali
Description: Hafnium based high-κ dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in complementary metal oxide semiconductor (CMOS) devices. Hydrogen is one of the most significant elements in semiconductor technology because of its pervasiveness in various deposition and optimization processes of electronic structures. Therefore, it is important to understand the properties and behavior of hydrogen in semiconductors with the final aim of controlling and using hydrogen to improve electronic performance of electronic structures. Trap transformations under annealing treatments in hydrogen ambient normally involve passivation of traps at thermal SiO2/Si interfaces by hydrogen. High-κ dielectric films are believed to exhibit significantly higher charge trapping affinity than SiO2. In this thesis, study of hydrogen trapping in alternate gate dielectric candidates such as HfO2 during annealing in hydrogen ambient is presented. Rutherford backscattering spectroscopy (RBS), elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA) were used to characterize these thin dielectric materials. It was demonstrated that hydrogen trapping in bulk HfO2 is significantly reduced for pre-oxidized HfO2 prior to forming gas anneals. This strong dependence on oxygen pre-processing is believed to be due to oxygen vacancies/deficiencies and hydrogen-carbon impurity complexes that originate from organic precursors used in ...
Contributing Partner: UNT Libraries
Functionalization and characterization of porous low-κ dielectrics.

Functionalization and characterization of porous low-κ dielectrics.

Access: Use of this item is restricted to the UNT Community.
Date: May 2005
Creator: Orozco-Teran, Rosa Amelia
Description: The incorporation of fluorine into SiO2 has been shown to reduce the dielectric constant of the existing materials by reducing the electrical polarizability. However, the incorporation of fluorine has also been shown to decrease film stability. Therefore, new efforts have been made to find different ways to further decrease the relative dielectric constant value of the existing low-k materials. One way to reduce the dielectric constant is by decreasing its density. This reduces the amount of polarizable materials. A good approach is increasing porosity of the film. Recently, fluorinated silica xerogel films have been identified as potential candidates for applications such as interlayer dielectric materials in CMOS technology. In addition to their low dielectric constants, these films present properties such as low refractive indices, low thermal conductivities, and high surface areas. Another approach to lower k is incorporating lighter atoms such as hydrogen or carbon. Silsesquioxane based materials are among them. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of triethoxyfluorosilane-based (TEFS) xerogel films when reacted with silylation agents. TEFS films were employed because they form robust silica ...
Contributing Partner: UNT Libraries
Study of Conductance Quantization by Cross-Wire Junction

Study of Conductance Quantization by Cross-Wire Junction

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Zheng, Tao
Description: The thesis studied quantized conductance in nanocontacts formed between two thin gold wires with one of the wires coated by alkainthiol self assembly monolayers (SAM), by using the cross-wire junction. Using the Lorenz force as the driving force, we can bring the two wires in contact in a controlled manner. We observed conductance with steps of 2e2 / h. The conductance plateaus last several seconds. The stability of the junction is attributed to the fact that the coating of SAM improves the stability and capability of the formed contact.
Contributing Partner: UNT Libraries
Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Date: August 2005
Creator: Pendse, Siddhi
Description: The effect of incorporation of montmorillonite layered silicate (MLS) on poly (ethylene terephthalate) (PET) matrix was investigated. MLS was added in varying concentration of 1 to 5 weight percent in the PET matrix. DSC and polarized optical microscopy were used to determine the crystallization effects of MLS addition. Non isothermal crystallization kinetics showed that the melting temperature and crystallization temperature decrease as the MLS percent increases. This delayed crystallization along with the irregular spherulitic shape indicates hindered crystallization in the presence of MLS platelets. The influence of this morphology was related with the fracture toughness of PET nanocomposites using essential work of fracture coupled with the infra red (IR) thermography. Both the essential as well as non essential work of fracture decreased on addition of MLS with nanocomposite showing reduced toughness.
Contributing Partner: UNT Libraries
Supercritical Silylation and Stability of Silyl Groups

Supercritical Silylation and Stability of Silyl Groups

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Nerusu, Pawan Kumar
Description: Methylsilsesquioxane (MSQ) and organosilicate glass (OSG) are the materials under this study because they exhibit the dielectric constant values necessary for future IC technology requirements. Obtaining a low-k dielectric value is critical for the IC industry in order to cope time delay and cross talking issues. These materials exhibit attractive dielectric value, but there are problems replacing conventional SiO2, because of their chemical, mechanical and electrical instability after plasma processing. Several techniques have been suggested to mitigate process damage but supercritical silylation offers a rapid single repair step solution to this problem. Different ash and etch damaged samples were employed in this study to optimize an effective method to repair the low-k dielectric material and seal the surface pores via supercritical fluid processing with various trialkylchlorosilanes. Fourier transform infrared spectroscopy (FTIR), contact angle, capacitance- voltage measurements, and x-ray photoemission spectroscopy, dynamic secondary ion mass spectroscopy (DSIMS), characterized the films. The hydrophobicity and dielectric constant after exposure to elevated temperatures and ambient conditions were monitored and shown to be stable. The samples were treated with a series of silylating agents of the form R3-Si-Cl where R is an alkyl groups (e.g. ethyl, propyl, isopropyl). Reactivity with the surface hydroxyls was inversely ...
Contributing Partner: UNT Libraries
Device Engineering for Enhanced Efficiency from Platinum(II) Phosphorescent OLEDs

Device Engineering for Enhanced Efficiency from Platinum(II) Phosphorescent OLEDs

Access: Use of this item is restricted to the UNT Community.
Date: August 2010
Creator: Li, Minghang
Description: Phosphorescent organic light emitting diodes (PHOLEDs) based on efficient electrophosphorescent dopant, platinum(II)-pyridyltriazolate complex, bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) have been studied and improved with respect to power efficiency, external efficiency, chromacity and efficiency roll-off. By studying the electrical and optical behavior of the doped devices and functionality of the various constituent layers, devices with a maximum EQE of 20.8±0.2 % and power efficiency of 45.1±0.9 lm/W (77lm/W with luminaries) have been engineered. This improvement compares to devices whose emission initially could only be detected by a photomultiplier tube in a darkened environment. These devices consisted of a 65 % bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) doped into 4,4'-bis(carbazol-9-yl)triphenylamine (CBP) an EML layer, a hole transporting layer/electron blocker of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), an electron transport layer of 1,3,5-tris(phenyl-2-benzimidazolyl)-benzene (TPBI), and a LiF/Al cathode. These devices show the acceptable range for warm white light quadrants and qualify to be called "warm white" even w/o adding another emissive layer. Dual EML devices composed of neat Pt(ptp)2 films emitting orange and CBP: Pt(ptp)2 film emitting blue-green produced a color rendering index (CRI) of 59 and color coordinates (CIE) of (0.47,0.49) at 1000Cd/m² with power efficiency of 12.6±0.2 lm/W and EQE of 10.8±0.2 %. Devices with two blue fluorescent emission layers as singlet ...
Contributing Partner: UNT Libraries
Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Date: August 2010
Creator: Lin, Ming-Te
Description: Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (25nm)/TPBI (30nm)/Mg:Ag (100nm), where NPB=N, N'-bis(1-naphthyl)-N-N'-biphenyl-1, 1'-biphenyl-4, MCP= N, N'-dicarbazolyl-3,5-benzene, TPBI=1,3,5-tris(phenyl-2-benzimidazolyl)-benzene, delayed recombination was observed and based on its dependence on frequency and duty cycle, ascribed to trapping and de-trapping processes at the interface of the emissive layer and electron blocker. The result suggests that the exciton recombination zone is at, or close to the interface between the emissive layer and electron blocker. The lifetime of the thin films of phosphorescent emitter Pt(ptp)2 were studied for comparison with rare earth emitter Eu(hfa)3. The lifetime of 65% Pt(ptp)2:CBP co-film was around 638 nanoseconds at the emission peak of 572nm, and the lifetime of neat Eu(hfa)3 film was obtained around 1 millisecond at 616 nm, which supports the enhanced efficiency obtained from the Pt(ptp)2 devices. The long lifetime and narrow emission of the rare earth dopant Eu(hfa)3 is a fundamental factor limiting device performance. Red ...
Contributing Partner: UNT Libraries
Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Date: August 2007
Creator: Diercks, David Robert
Description: The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have ...
Contributing Partner: UNT Libraries
Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Date: December 2010
Creator: Gopagoni, Sundeep
Description: Ni/TiC metal matrix composites have been processed using the laser engineered net shaping (LENS) process. As nickel does not form an equilibrium carbide phase, addition of a strong carbide former in the form of titanium reinforces the nickel matrix resulting in a promising hybrid material for both surface engineering as well as high temperature structural applications. Changing the relative amounts of titanium and carbon in the nickel matrix, relatively low volume fraction of refined homogeneously distributed carbide precipitates, formation of in-situ carbide precipitates and the microstructural changes are investigated. The composites have been characterized in detail using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy (XEDS) mapping and electron backscatter diffraction (EBSD)), Auger electron spectroscopy, and transmission (including high resolution) electron microscopy. Both primary and eutectic titanium carbides, observed in this composite, exhibited the fcc-TiC structure (NaCl-type). Details of the orientation relationship between Ni and TiC have been studied using SEM-EBSD and high resolution TEM. The results of micro-hardness and tribology tests indicate that these composites have a relatively high hardness and a steady-state friction coefficient of ~0.5, both of which are improvements in comparison to LENS deposited pure Ni.
Contributing Partner: UNT Libraries
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Date: August 2010
Creator: Hetherly, Jeffery
Description: Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
Contributing Partner: UNT Libraries
Long Term Property Prediction of Polyethylene Nanocomposites

Long Term Property Prediction of Polyethylene Nanocomposites

Date: December 2008
Creator: Shaito, Ali Al-Abed
Description: The amorphous fraction of semicrystalline polymers has long been thought to be a significant contributor to creep deformation. In polyethylene (PE) nanocomposites, the semicrystalline nature of the maleated PE compatibilizer leads to a limited ability to separate the role of the PE in the nanocomposite properties. This dissertation investigates blown films of linear low-density polyethylene (LLDPE) and its nanocomposites with montmorillonite-layered silicate (MLS). Addition of an amorphous ethylene propylene copolymer grafted maleic anhydride (amEP) was utilized to enhance the interaction between the PE and the MLS. The amorphous nature of the compatibilizer was used to differentiate the effect of the different components of the nanocomposites; namely the matrix, the filler, and the compatibilizer on the overall properties. Tensile test results of the nanocomposites indicate that the addition of amEP and MLS separately and together produces a synergistic effect on the mechanical properties of the neat PE Thermal transitions were analyzed using differential scanning calorimetry (DSC) to determine if the observed improvement in mechanical properties is related to changes in crystallinity. The effect of dispersion of the MLS in the matrix was investigated by using a combination of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Mechanical measurements were correlated to ...
Contributing Partner: UNT Libraries
Indentation induced deformation in metallic materials.

Indentation induced deformation in metallic materials.

Date: December 2005
Creator: Vadlakonda, Suman
Description: Nanoindentation has brought in many features of research over the past decade. This novel technique is capable of producing insights into the small ranges of deformation. This special point has brought a lot of focus in understanding the deformation behavior under the indenter. Nickel, iron, tungsten and copper-niobium alloy system were considered for a surface deformation study. All the samples exhibited a spectrum of residual deformation. The change in behavior with indentation and the materials responses to deformation at low and high loads is addressed in this study. A study on indenter geometry, which has a huge influence on the contact area and subsequently the hardness and modulus value, has been attempted. Deformation mechanisms that govern the plastic flow in materials at low loads of indentation and their sensitivity to the rate of strain imparted has been studied. A transition to elastic, plastic kind of a tendency to an elasto-plastic tendency was seen with an increase in the strain rate. All samples exhibited the same kind of behavior and a special focus is drawn in comparing the FCC nickel with BCC tungsten and iron where the persistence of the elastic, plastic response was addressed. However there is no absolute reason ...
Contributing Partner: UNT Libraries
Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3  Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3 Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Date: December 2008
Creator: Romanes, Maia Castillo
Description: Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures, they would be excellent solid lubricants for a wide range of conditions. Atomic layer deposition (ALD) is a growth technique capable of depositing highly uniform and conformal films in challenging applications that have buried surfaces and high-aspect-ratio features such as microelectromechanical (MEMS) devices where the need for robust solid lubricants is sometimes necessary. This dissertation investigates the surface and subsurface characteristics of ALD-grown ZnO/Al2O3 nanolaminates and ZrO2 monofilms before and after sliding at room temperature. Significant enhancement in friction and wear performance was observed for some films. HRSEM/FIB, HRTEM and ancillary techniques (i.e. SAED, EELS) were used to determine the mechanisms responsible for this enhancement. Contributory characteristics and energy dissipation modes were identified that promote low-temperature lubricity in both material systems.
Contributing Partner: UNT Libraries
Definition of Brittleness: Connections Between Mechanical and Tribological Properties of Polymers.

Definition of Brittleness: Connections Between Mechanical and Tribological Properties of Polymers.

Date: August 2008
Creator: Hagg Lobland, Haley E.
Description: The increasing use of polymer-based materials (PBMs) across all types of industry has not been matched by sufficient improvements in understanding of polymer tribology: friction, wear, and lubrication. Further, viscoelasticity of PBMs complicates characterization of their behavior. Using data from micro-scratch testing, it was determined that viscoelastic recovery (healing) in sliding wear is independent of the indenter force within a defined range of load values. Strain hardening in sliding wear was observed for all materials-including polymers and composites with a wide variety of chemical structures-with the exception of polystyrene (PS). The healing in sliding wear was connected to free volume in polymers by using pressure-volume-temperature (P-V-T) results and the Hartmann equation of state. A linear relationship was found for all polymers studied with again the exception of PS. The exceptional behavior of PS has been attributed qualitatively to brittleness. In pursuit of a precise description of such, a quantitative definition of brittleness has been defined in terms of the elongation at break and storage modulus-a combination of parameters derived from both static and dynamic mechanical testing. Furthermore, a relationship between sliding wear recovery and brittleness for all PBMs including PS is demonstrated. The definition of brittleness may be used as ...
Contributing Partner: UNT Libraries
Determination of Wear in Polymers Using Multiple Scratch Test.

Determination of Wear in Polymers Using Multiple Scratch Test.

Date: August 2004
Creator: Damarla, Gowrisankar
Description: Wear is an important phenomenon that occurs in all the polymer applications in one form or the other. However, important links between materials properties and wear remain illusive. Thus optimization of material properties requires proper understanding of polymer properties. Studies to date have typically lacked systematic approach to all polymers and wear test developed are specific to some polymer classes. In this thesis, different classes of polymers are selected and an attempt is made to use multiple scratch test to define wear and to create a universal test procedure that can be employed to most of the polymers. In each of the materials studied, the scratch penetration depth s reaches a constant value after certain number of scratches depending upon the polymer and its properties. Variations in test parameters like load and speed are also studied in detail to understand the behavior of polymers and under different conditions. Apart from polystyrene, all the other polymers studied under multiple scratch test reached asymptotes at different scratch numbers.
Contributing Partner: UNT Libraries
Barrier and Long Term Creep Properties of Polymer Nanocomposites.

Barrier and Long Term Creep Properties of Polymer Nanocomposites.

Access: Use of this item is restricted to the UNT Community.
Date: December 2004
Creator: Ranade, Ajit
Description: The barrier properties and long term strength retention of polymers are of significant importance in a number of applications. Enhanced lifetime food packaging, substrates for OLED based flexible displays and long duration scientific balloons are among them. Higher material requirements in these applications drive the need for an accurate measurement system. Therefore, a new system was engineered with enhanced sensitivity and accuracy. Permeability of polymers is affected by permeant solubility and diffusion. One effort to decrease diffusion rates is via increasing the transport path length. We explore this through dispersion of layered silicates into polymers. Layered silicates with effective aspect ratio of 1000:1 have shown promise in improving the barrier and mechanical properties of polymers. The surface of these inorganic silicates was modified with surfactants to improve the interaction with organic polymers. The micro and nanoscale dispersion of the layered silicates was probed using optical and transmission microscopy as well as x-ray diffraction. Thermal transitions were analyzed using differential scanning calorimetry. Mechanical and permeability measurements were correlated to the dispersion and increased density. The essential structure-property relationships were established by comparing semicrystalline and amorphous polymers. Semicrystalline polymers selected were nylon-6 and polyethylene terephthalate. The amorphous polymer was polyethylene terphthalate-glycol. Densification ...
Contributing Partner: UNT Libraries
Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.

Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.

Date: May 2007
Creator: Hwang, Junyeon
Description: Among the commercial aluminum alloys, aluminum 319 (Al-7wt%Si-4wt%Cu) type alloys are popularly used in automobile engine parts. These alloys have good casting characteristics and excellent mechanical properties resulting from a suitable heat treatment. To get a high strength in the 319 type alloys, grain refining, reducing the porosity, solid solution hardening, and precipitation hardening are preferred. All experimental variables such as solidification condition, composition, and heat treatment are influence on the precipitation behavior; however, precipitation hardening is the most significant because excess alloying elements from supersaturated solid solution form fine particles which act as obstacles to dislocation movement. The challenges of the 319 type alloys arise due to small size of precipitate and complex aging response caused by multi components. It is important to determine the chemical composition, crystal structure, and orientation relationship as well as precipitate morphology in order to understand the precipitation behavior and strengthening mechanism. In this study, the mechanical properties and microstructure were investigated using transmission electron microscopy and three dimensional atom probe tomography. The Mn and Mg effects on the microstructure and mechanical properties are discussed with crystallographic study on the iron intermetallic phases. The microstructural evolution and nucleation study on the precipitates in the ...
Contributing Partner: UNT Libraries
Bulk and Interfacial Effects on Density in Polymer Nanocomposites

Bulk and Interfacial Effects on Density in Polymer Nanocomposites

Date: May 2007
Creator: Sahu, Laxmi Kumari
Description: The barrier properties of polymers are a significant factor in determining the shelf or device lifetime in polymer packaging. Nanocomposites developed from the dispersion of nanometer thick platelets into a host polymer matrix have shown much promise. The magnitude of the benefit on permeability has been different depending on the polymer investigated or the degree of dispersion of the platelet in the polymer. In this dissertation, the effect of density changes in the bulk and at the polymer-platelet interface on permeability of polymer nanocomposites is investigated. Nanocomposites of nylon, PET, and PEN were processed by extrusion. Montmorillonite layered silicate (MLS) in a range of concentrations from 1 to 5% was blended with all three resins. Dispersion of the MLS in the matrix was investigated by using one or a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Variation in bulk density via crystallization was analyzed using differential scanning calorimetry (DSC) and polarized optical microscopy. Interfacial densification was investigated using force modulation atomic force microscopy (AFM) and ellipsometry. Mechanical properties are reported. Permeability of all films was measured in an in-house built permeability measurement system. The effect of polymer orientation and induced defects on permeability ...
Contributing Partner: UNT Libraries
Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys

Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys

Date: May 2015
Creator: Karewar, Shivraj
Description: Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg using atomistic simulations. In the first part, I create a reliable and transferable concentration dependent embedded atom method (CD-EAM) potential for my molecular dynamics study of deformation. This potential describes the Mg-Li phase diagram, which accurately describes the phase stability as a function of Li concentration and temperature. Also, it reproduces the heat of mixing, lattice parameters, and bulk moduli of the alloy as a function of Li concentration. Most importantly, our CD-EAM potential reproduces the variation of stacking fault energy for basal, prismatic, and pyramidal slip systems that influences the deformation mechanisms as a function of Li concentration. This success of CD-EAM Mg-Li potential in reproducing different properties, as compared to literature data, shows its reliability and transferability. Next, I use this newly created potential ...
Contributing Partner: UNT Libraries
An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and  Ti-Sb

An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and Ti-Sb

Date: May 2015
Creator: Brice, David
Description: The current study focuses on phase stability and evolution in the titanium-zinc titanium-copper and titanium-antimony systems. The study utilized the Laser Engineering Net Shaping (LENS™) processing technique to deposit compositionally graded samples of three binary system in order to allow the assessment of phase stability and evolution as a function of composition and temperature the material is subjected to. Through LENS™ processing it was possible to create graded samples from Ti-xSb (up to 13wt%) and Ti-xCu (up to 16wt%). The LENS™ deposited gradient were solutionized, and step quenched to specific aging temperature, and the resulting microstructures and phase were characterized utilizing XRD, EDS, SEM, FIB and TEM. The Ti-Zn system proved incapable of being LENS™ deposited due to the low vaporization temperature of Zn; however, a novel processing approach was developed to drip liquid Zn onto Ti powder at temperatures above β transus temperature of Ti (882 ◦C) and below the vaporization temperature of Zn (907 ◦C). The product of this processing technique was characterized in a similar way as the graded LENS™ depositions. From measurements performed on Ti-Sb it seems that Sb could be a potential α stabilizer in Ti due to the presence of a mostly homogeneous α ...
Contributing Partner: UNT Libraries