This system will be undergoing maintenance Tuesday, May 5, 2015 from 10:00 AM to 11:00 AM CDT.

  You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Biochemistry
 Collection: UNT Theses and Dissertations
Use of luminescence energy transfer probes to detect genetic variants.

Use of luminescence energy transfer probes to detect genetic variants.

Date: August 2004
Creator: Vaccaro, Carlos
Description: The purpose of this research was to study the hybridization of molecular beacons under different conditions and designs. Data collected suggest that the inconsistency found in the emission intensity of several of these probes may be caused by 3 important factors: length of the probe, nucleotide sequence and, the formation of an alternative complex structure such as a dimer. Of all three factors, dimer formation is the most troublesome, since it reduces the emission of the reporter molecules. A new probe design was used to reduce dimer formation. The emission signal of the improved probe was several folds stronger than those probes with the early design. In this research, dimer formation is detected, furthermore a new probe with a different design was tested. If dimer formation can be reduced molecular beacons can be integrated into more complex hybridization systems providing an important tool in research and diagnosis of genetic disorders.
Contributing Partner: UNT Libraries
Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.

Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.

Access: Use of this item is restricted to the UNT Community.
Date: May 2005
Creator: McHugh, John
Description: N-Acylethanolamines (NAEs) are enriched in seed-derived tissues and are believed to be formed from the membrane phospholipid, N-acylphosphatidylethanolamine (NAPE) via the action of phospholipase D (PLD). In an effort to identify a functional NAPE-PLD in cotton seeds and seedlings, we have screened a cotton seedling cDNA (cotyledon mRNA from 48 h dark grown seedlings) library with a 1.2 kb tobacco partial cDNA fragment encoding the middle third of a putative PLDβ/γ (genbank accession, AF195614) isoform. Six plaques were isolated from the Uni-ZAP lambda library, excised as pBluescript SK(-) phagemids and subjected to nucleotide sequence analysis. Alignment of derived sequences with Arabidopsis PLD family members indicated that the cDNAs represent six different PLD gene products -three putative PLD β isoforms and three putative PLD δ isoforms. The PLD β isoforms, designated Ghpldβ1a, GHpldβ1b and a truncated Ghpldβ1b isoform. Both the full-length PLD β proteins contained characteristic HKxxxxD catalytic domains, a PC-binding domain, a PIP2-binding domain and a C2 domain. In addition both cotton PLD β isoforms had a N-terminal "SPQY" rich domain which appeared to be unique to these PLDs. The three PLD δ isoforms, designated Ghpldδ1a, Ghpldδ1b and Ghpldδ1b-2 encode full-length PLDδ proteins, and like the above PLDs, contained the ...
Contributing Partner: UNT Libraries
FLP-mediated conditional loss of an essential gene to facilitate complementation assays

FLP-mediated conditional loss of an essential gene to facilitate complementation assays

Date: December 2007
Creator: Ganesan, Savita
Description: Commonly, when it is desirable to replace an essential gene with an allelic series of mutated genes, or genes with altered expression patterns, the complementing constructs are introduced into heterozygous plants, followed by the selection of homozygous null segregants. To overcome this laborious and time-consuming step, the newly developed two-component system utilizes a site-specific recombinase to excise a wild-type copy of the gene of interest from transformed tissues. In the first component (the first vector), a wild-type version of the gene is placed between target sequences recognized by FLP recombinase from the yeast 2 μm plasmid. This construct is transformed into a plant heterozygous for a null mutation at the endogenous locus, and progeny plants carrying the excisable complementing gene and segregating homozygous knockout at the endogenous locus are selected. The second component (the second vector) carries the experimental gene along with the FLP gene. When this construct is introduced, FLP recombinase excises the complementing gene, leaving the experimental gene as the only functional copy. The FLP gene is driven by an egg apparatus specific enhancer (EASE) to ensure excision of the complementing cDNA in the egg cell and zygote following floral-dip transformation. The utility of this system is being ...
Contributing Partner: UNT Libraries
Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis

Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis

Date: August 2001
Creator: Hoang, Chau V.
Description: Recently, plastidial carbonic anhydrase (CA, EC 4.2.1.1) cDNA clones encoding functional CA enzymes were isolated from a nonphotosynthetic cotton tissue. The role of CA in photosynthetic tissues have been well characterized, however there is almost no information for the role of CA in nonphotosynthetic tissues. A survey of relative CA transcript abundance and enzyme activity in different cotton organs revealed that there was substantial CA expression in cotyledons of seedlings and embryos, both nonphotosynthetic tissues. To gain insight into the role(s) of CA, I examined CA expression in cotyledons of seedlings during post-germinative growth at different environmental conditions. CA expression in cotyledons of seedlings increased from 18 h to 72 h after germination in the dark. Seedlings exposed to light had about a 2-fold increase in CA activities when compared with seedlings kept in the dark, whereas relative CA transcript levels were essentially the same. Manipulation of external CO2 environments [zero, ambient (350 ppm), or high (1000 ppm)] modulated coordinately the relative transcript abundance of CA (and rbcS) in cotyledons, but did not affect enzyme activities. On the other hand, regardless of the external CO2 conditions seedlings exposed to light exhibited increase CA activity, concomitant with Rubisco activity and increased ...
Contributing Partner: UNT Libraries
Palmitoyl-acyl carrier protein thioesterase in cotton (Gossypium hirsutum L.): biochemical and molecular characterization of a major mechanism for the regulation of palmitic acid content.

Palmitoyl-acyl carrier protein thioesterase in cotton (Gossypium hirsutum L.): biochemical and molecular characterization of a major mechanism for the regulation of palmitic acid content.

Date: August 2001
Creator: Huynh, Tu T
Description: The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton ...
Contributing Partner: UNT Libraries
Manipulating Sucrose Proton Symporters to Understand Phloem Loading

Manipulating Sucrose Proton Symporters to Understand Phloem Loading

Date: August 2013
Creator: Dasgupta, Kasturi
Description: Phloem vascular tissues transport sugars synthesized by photosynthesis in mature leaves by a process called phloem loading in source tissues and unloading in sink tissues. Phloem loading in source leaves is catalyzed by Suc/H+ symporters (SUTs) which are energized by proton motive force. In Arabidopsis the principal and perhaps exclusive SUT catalyzing phloem loading is AtSUC2. In mutant plants harboring a T-DNA insertion in each of the functional SUT-family members, only Atsuc2 mutants demonstrate overtly debilitated phloem transport. Analysis of a mutant allele (Atsuc2-4) of AtSUC2 with a T-DNA insertion in the second intron showed severely stunted phenotype similar to previously analyzed Atsuc2 null alleles. However unlike previous alleles Atsuc2-4 produced viable seeds. Analysis of phloem specific promoters showed that promoter expression was regulated by Suc concentration. Unlike AtSUC2p, heterologous promoter CoYMVp was not repressed under high Suc conc. Further analysis was conducted using CoYMVp to test the capacity of diverse clades in SUT-gene family for transferring Suc in planta in Atsuc2 - / - mutant background. AtSUC1 and ZmSUT1 from maize complemented Atsuc2 mutant plants to the highest level compared to all other transporters. Over-expression of the above SUTs in phloem showed enhanced Suc loading and transport, but against ...
Contributing Partner: UNT Libraries
Stretching the Flexible Myosin II Subfragment Using the Novel Gravitational Force Spectroscope, and the Uncoiling of S2

Stretching the Flexible Myosin II Subfragment Using the Novel Gravitational Force Spectroscope, and the Uncoiling of S2

Date: May 2010
Creator: Dunn, James W.
Description: Familial Hypertrophic cardiomyopathy (HCM) causes ventricle walls to thicken and often leads to sudden death especially in adults. Mutations in the subfragment 2 (S2) of β-cardiac myosin are implicated in the genetic disorder. This S2 region is a coiled-coil rod region resulting from the dimeric form of myosin II. It has been proposed that an elastic quality allows normal S2 to absorb force during the powerstroke according to the sliding filament model. To test the flexibility of single molecules of S2 against levels of physiological force, the Gravitational Force Spectrometer (GFS) is being developed. This novel system employs a standard microscope on an equatorial mount that allows the spectrometer to be rotated freely in space. Stationary glass beads are attached to a microscope slide where the molecule is tethered between the stationary bead and a smaller mobile bead. The GFS is oriented so that the force of gravity can act on the mobile bead and so impart a small force to the tethered subfragment. Additionally, a video system in conjunction with ImageJ software makes a distance measurement of the molecule possible with a resolution of around 11 nm. The S2 can be stretched parallel or perpendicular to the coiled coil ...
Contributing Partner: UNT Libraries
Identification of Three Symbiosome Targeting Domains in the MtENOD8 Protein and Cell-to-cell MtENOD8 mRNA Movement in Nodules

Identification of Three Symbiosome Targeting Domains in the MtENOD8 Protein and Cell-to-cell MtENOD8 mRNA Movement in Nodules

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Meckfessel, Matthew Harold
Description: The model legume, Medicago truncatula, is able to enter into a symbiotic relationship with soil bacteria, known as rhizobia. This relationship involves a carbon for nitrogen exchange in which the plant provides reduced carbon from photosynthesis in exchange for reduced, or “fixed” atmospheric nitrogen, which allows the plant to thrive in nitrogen depleted soils. Rhizobia infect and enter plant root organs, known as nodules, where they reside inside the plant cell in a novel organelle, known as the symbiosome where nitrogen fixation occurs. the symbiosome is enriched in plant proteins, however, little is known about the mechanisms that direct plant proteins to the symbiosome. Using the M. truncatula ENOD8 (MtENOD8) protein as a model to explore symbiosome protein targeting, 3-cis domains were identified within MtENOD8 capable of directing green fluorescent protein (GFP) to the symbiosome, including its N-terminal signal peptide (SP). the SP delivered GFP to the vacuole in the absence of nodules suggesting that symbiosome proteins share a common targeting pathway with vacuolar proteins. a time course analysis during nodulation indicated that there is a nodule specific redirection of MtENOD8-SP from the vacuole to the symbiosome in a MtNIP/LATD dependent manner. GFP expression by the MtENOD8 promoter revealed spatial ...
Contributing Partner: UNT Libraries
Function of the ENOD8 gene in nodules of Medicago truncatula.

Function of the ENOD8 gene in nodules of Medicago truncatula.

Date: December 2006
Creator: Coque, Laurent
Description: To elaborate on the function(s) of the ENOD8 gene in the nodules of M. truncatula, several different experimental approaches were used. A census of the ENOD8 genes was first completed indicating that only ENOD8.1 (nt10554-12564 of GenBank AF463407) is highly expressed in nodule tissues. A maltose binding protein-ENOD8 fusion protein was made with an E. coli recombinant system. A variety of biochemical assays were undertaken with the MBP-ENOD8 recombinant protein expressed in E. coli, which did not yield the esterase activity observed for ENOD8 protein nodule fractions purified from M. sativa, tested on general esterase substrates, α-naphthyl acetate, and p-nitrophenylacetate. Attempts were also made to express ENOD8 in a Pichia pastoris system; no ENOD8 protein could be detected from Pichia pastoris strains which were transformed with the ENOD8 expression cassette. Additionally, it was shown that the ENOD8 protein can be recombinantly synthesized by Nicotiana benthamiana in a soluble form, which could be tested for activity toward esterase substrates, bearing resemblance to nodule compounds, such as the Nod factor. Transcription localization studies using an ENOD8 promoter gusA fusion indicated that ENOD8 is expressed in the bacteroid-invaded zone of the nodule. The ENOD8 protein was also detected in that same zone by ...
Contributing Partner: UNT Libraries
Identifying genetic interactions of the spindle checkpoint in Caenorhabditis elegans.

Identifying genetic interactions of the spindle checkpoint in Caenorhabditis elegans.

Date: May 2009
Creator: Stewart, Neil
Description: Faithful segregation of chromosomes is ensured by the spindle checkpoint. If a kinetochore does not correctly attach to a microtubule the spindle checkpoint stops cell cycle progression until all chromosomes are attached to microtubules or tension is experienced while pulling the chromosomes. The C. elegans gene, san-1, is required for spindle checkpoint function and anoxia survival. To further understand the role of san-1 in the spindle checkpoint, an RNAi screen was conducted to identify genetic interactions with san-1. The kinetochore gene hcp-1 identified in this screen, was known to have a genetic interaction with hcp-2. Interestingly, san-1(ok1580);hcp-2(ok1757) had embryonic and larval lethal phenotypes, but the phenotypes observed are less severe compared to the phenotypes of san-1(ok1580);hcp-1(RNAi) animals. Both san-1(ok1580);hcp-1(RNAi) and san-1(ok1580);hcp-2(RNAi) produce eggs that may hatch; but san-1(ok1580):hcp-1(RNAi) larvae do not survive to adulthood due to defects caused by aberrant chromosome segregations during development. Y54G9A.6 encodes the C. elegans homolog of bub-3, and has spindle checkpoint function. In C.elegans, bub-3 has genetic interactions with san-1 and mdf-2. An RNAi screen for genetic interactions with bub-3 identified that F31F6.3 may potentially have a genetic interaction with bub-3. This work provided genetic evidence that hcp-1, hcp-2 and F31F6.2 interact with spindle checkpoint ...
Contributing Partner: UNT Libraries