You limited your search to:

  Partner: UNT Libraries
 Decade: 2000-2009
 Degree Discipline: Computer Engineering
 Collection: UNT Theses and Dissertations
OLAP Services

OLAP Services

Access: Use of this item is restricted to the UNT Community.
Date: December 2003
Creator: Sanghvi, Rajendra
Description: On-line Analytical Processing (OLAP) is a very interesting platform to provide analytical power to the data present in the database. This paper discusses the system designed which handles integration of data from two remote legacy reservation systems to merge as one Integrated database server and also the design of an OLAP database and building an OLAP cube for the data warehousing. OLAP cube is useful for analysis of data and also for making various business decisions. The Data Transformation Services (DTS) in the Microsoft® SQL Server 2000 is used to integrate as a package the collection of data and also for refreshing data in the databases. On-line Analytical Processing (OLAP) cube is designed using Microsoft® Analysis Server.
Contributing Partner: UNT Libraries
A nano-CMOS based universal voltage level converter for multi-VDD SoCs.

A nano-CMOS based universal voltage level converter for multi-VDD SoCs.

Date: May 2007
Creator: Vadlmudi, Tripurasuparna
Description: Power dissipation of integrated circuits is the most demanding issue for very large scale integration (VLSI) design engineers, especially for portable and mobile applications. Use of multiple supply voltages systems, which employs level converter between two voltage islands is one of the most effective ways to reduce power consumption. In this thesis work, a unique level converter known as universal level converter (ULC), capable of four distinct level converting operations, is proposed. The schematic and layout of ULC are built and simulated using CADENCE. The ULC is characterized by performing three analysis such as parametric, power, and load analysis which prove that the design has an average power consumption reduction of about 85-97% and capable of producing stable output at low voltages like 0.45V even under varying load conditions.
Contributing Partner: UNT Libraries
Comparison and Evaluation of Existing Analog Circuit Simulator using Sigma-Delta Modulator

Comparison and Evaluation of Existing Analog Circuit Simulator using Sigma-Delta Modulator

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Ale, Anil Kumar
Description: In the world of VLSI (very large scale integration) technology, there are many different types of circuit simulators that are used to design and predict the circuit behavior before actual fabrication of the circuit. In this thesis, I compared and evaluated existing circuit simulators by considering standard benchmark circuits. The circuit simulators which I evaluated and explored are Ngspice, Tclspice, Winspice (open source) and Spectre® (commercial). I also tested standard benchmarks using these circuit simulators and compared their outputs. The simulators are evaluated using design metrics in order to quantify their performance and identify efficient circuit simulators. In addition, I designed a sigma-delta modulator and its individual components using the analog behavioral language Verilog-A. Initially, I performed simulations of individual components of the sigma-delta modulator and later of the whole system. Finally, CMOS (complementary metal-oxide semiconductor) transistor-level circuits were designed for the differential amplifier, operational amplifier and comparator of the modulator.
Contributing Partner: UNT Libraries
Energy-Aware Time Synchronization in Wireless Sensor Networks

Energy-Aware Time Synchronization in Wireless Sensor Networks

Date: December 2006
Creator: Saravanos, Yanos
Description: I present a time synchronization algorithm for wireless sensor networks that aims to conserve sensor battery power. The proposed method creates a hierarchical tree by flooding the sensor network from a designated source point. It then uses a hybrid algorithm derived from the timing-sync protocol for sensor networks (TSPN) and the reference broadcast synchronization method (RBS) to periodically synchronize sensor clocks by minimizing energy consumption. In multi-hop ad-hoc networks, a depleted sensor will drop information from all other sensors that route data through it, decreasing the physical area being monitored by the network. The proposed method uses several techniques and thresholds to maintain network connectivity. A new root sensor is chosen when the current one's battery power decreases to a designated value. I implement this new synchronization technique using Matlab and show that it can provide significant power savings over both TPSN and RBS.
Contributing Partner: UNT Libraries
Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles

Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles

Date: December 2007
Creator: Pati, Nishikanta
Description: Recently, there is a great interest in moving object tracking in the fields of security and surveillance. Object recognition under partial occlusion is the core of any object tracking system. This thesis presents an automatic and real-time color object-recognition system which is not only robust but also occlusion tolerant. The intended use of the system is to recognize and track external vehicles entered inside a secured area like a school campus or any army base. Statistical morphological skeleton is used to represent the visible shape of the vehicle. Simple curve matching and different feature based matching techniques are used to recognize the segmented vehicle. Features of the vehicle are extracted upon entering the secured area. The vehicle is recognized from either a digital video frame or a static digital image when needed. The recognition engine will help the design of a high performance tracking system meant for remote video surveillance.
Contributing Partner: UNT Libraries
Design and Optimization of Components in a 45nm CMOS Phase Locked Loop

Design and Optimization of Components in a 45nm CMOS Phase Locked Loop

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Sarivisetti, Gayathri
Description: A novel scheme of optimizing the individual components of a phase locked loop (PLL) which is used for stable clock generation and synchronization of signals is considered in this work. Verilog-A is used for the high level system design of the main components of the PLL, followed by the individual component wise optimization. The design of experiments (DOE) approach to optimize the analog, 45nm voltage controlled oscillator (VCO) is presented. Also a mixed signal analysis using the analog and digital Verilog behavior of components is studied. Overall a high level system design of a PLL, a systematic optimization of each of its components, and an analog and mixed signal behavioral design approach have been implemented using cadence custom IC design tools.
Contributing Partner: UNT Libraries
Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator

Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator

Date: May 2007
Creator: Kincaid, Cheryl-Annette
Description: Modern communication systems rely heavily upon microwave, radio, and other electromagnetic frequency bands as a means of providing wireless communication links. Although convenient, wireless communication is susceptible to electromagnetic interference. Solar activity causes both direct interference through electromagnetic radiation as well as indirect interference caused by charged particles interacting with Earth's magnetic field. The Solar Radio Burst Locator (SRBL) is a United States Air Force radio telescope designed to detect and locate solar microwave bursts as they occur on the Sun. By analyzing these events, the Air Force hopes to gain a better understanding of the root causes of solar interference and improve interference forecasts. This thesis presents methods of searching and analyzing events found in the previously unstudied SRBL data archive. A new web-based application aids in the searching and visualization of the data. Comparative analysis is performed amongst data collected by SRBL and several other instruments. This thesis also analyzes events across the time, intensity, and frequency domains. These analysis methods can be used to aid in the detection and understanding of solar events so as to provide improved forecasts of solar-induced electromagnetic interference.
Contributing Partner: UNT Libraries
Region aware DCT domain invisible robust blind watermarking for color images.

Region aware DCT domain invisible robust blind watermarking for color images.

Date: December 2008
Creator: Naraharisetti, Sahasan
Description: The multimedia revolution has made a strong impact on our society. The explosive growth of the Internet, the access to this digital information generates new opportunities and challenges. The ease of editing and duplication in digital domain created the concern of copyright protection for content providers. Various schemes to embed secondary data in the digital media are investigated to preserve copyright and to discourage unauthorized duplication: where digital watermarking is a viable solution. This thesis proposes a novel invisible watermarking scheme: a discrete cosine transform (DCT) domain based watermark embedding and blind extraction algorithm for copyright protection of the color images. Testing of the proposed watermarking scheme's robustness and security via different benchmarks proves its resilience to digital attacks. The detectors response, PSNR and RMSE results show that our algorithm has a better security performance than most of the existing algorithms.
Contributing Partner: UNT Libraries
A Dual Dielectric Approach for Performance Aware Reduction of Gate Leakage in Combinational Circuits

A Dual Dielectric Approach for Performance Aware Reduction of Gate Leakage in Combinational Circuits

Date: May 2006
Creator: Mukherjee, Valmiki
Description: Design of systems in the low-end nanometer domain has introduced new dimensions in power consumption and dissipation in CMOS devices. With continued and aggressive scaling, using low thickness SiO2 for the transistor gates, gate leakage due to gate oxide direct tunneling current has emerged as the major component of leakage in the CMOS circuits. Therefore, providing a solution to the issue of gate oxide leakage has become one of the key concerns in achieving low power and high performance CMOS VLSI circuits. In this thesis, a new approach is proposed involving dual dielectric of dual thicknesses (DKDT) for the reducing both ON and OFF state gate leakage. It is claimed that the simultaneous utilization of SiON and SiO2 each with multiple thicknesses is a better approach for gate leakage reduction than the conventional usage of a single gate dielectric (SiO2), possibly with multiple thicknesses. An algorithm is developed for DKDT assignment that minimizes the overall leakage for a circuit without compromising with the performance. Extensive experiments were carried out on ISCAS'85 benchmarks using 45nm technology which showed that the proposed approach can reduce the leakage, as much as 98% (in an average 89.5%), without degrading the performance.
Contributing Partner: UNT Libraries
Modeling and reduction of gate leakage during behavioral synthesis of nanoscale CMOS circuits.

Modeling and reduction of gate leakage during behavioral synthesis of nanoscale CMOS circuits.

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Velagapudi, Ramakrishna
Description: The major sources of power dissipation in a nanometer CMOS circuit are capacitive switching, short-circuit current, static leakage and gate oxide tunneling. However, with the aggressive scaling of technology the gate oxide direct tunneling current (gate leakage) is emerging as a prominent component of power dissipation. For sub-65 nm CMOS technology where the gate oxide (SiO2) thickness is very low, the direct tunneling current is the major form of tunneling. There are two contribution parts in this thesis: analytical modeling of behavioral level components for direct tunneling current and propagation delay, and the reduction of tunneling current during behavioral synthesis. Gate oxides of multiple thicknesses are useful in reducing the gate leakage dissipation. Analytical models from first principles to calculate the tunneling current and the propagation delay of behavioral level components is presented, which are backed by BSIM4/5 models and SPICE simulations. These components are characterized for 45 nm technology and an algorithm is provided for scheduling of datapath operations such that the overall tunneling current dissipation of a datapath circuit under design is minimal. It is observed that the oxide thickness that is being considered is very low it may not remain constant during the course of fabrication. Hence ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST