You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Computer Science and Engineering
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Access: Use of this item is restricted to the UNT Community.
Date: August 2011
Creator: Shen, Yao
Description: Conventional pattern recognition systems have two components: feature analysis and pattern classification. For any object in an image, features could be considered as the major characteristic of the object either for object recognition or object tracking purpose. Features extracted from a training image, can be used to identify the object when attempting to locate the object in a test image containing many other objects. To perform reliable scene analysis, it is important that the features extracted from the training image are detectable even under changes in image scale, noise and illumination. Scale invariant feature has wide applications such as image classification, object recognition and object tracking in the image processing area. In this thesis, color feature and SIFT (scale invariant feature transform) are considered to be scale invariant feature. The classification, recognition and tracking result were evaluated with novel evaluation criterion and compared with some existing methods. I also studied different types of scale invariant feature for the purpose of solving scene analysis problems. I propose probabilistic models as the foundation of analysis scene scenario of images. In order to differential the content of image, I develop novel algorithms for the adaptive combination for multiple features extracted from images. I ...
Contributing Partner: UNT Libraries
Exploring Privacy in Location-based Services Using Cryptographic Protocols

Exploring Privacy in Location-based Services Using Cryptographic Protocols

Date: May 2011
Creator: Vishwanathan, Roopa
Description: Location-based services (LBS) are available on a variety of mobile platforms like cell phones, PDA's, etc. and an increasing number of users subscribe to and use these services. Two of the popular models of information flow in LBS are the client-server model and the peer-to-peer model, in both of which, existing approaches do not always provide privacy for all parties concerned. In this work, I study the feasibility of applying cryptographic protocols to design privacy-preserving solutions for LBS from an experimental and theoretical standpoint. In the client-server model, I construct a two-phase framework for processing nearest neighbor queries using combinations of cryptographic protocols such as oblivious transfer and private information retrieval. In the peer-to-peer model, I present privacy preserving solutions for processing group nearest neighbor queries in the semi-honest and dishonest adversarial models. I apply concepts from secure multi-party computation to realize our constructions and also leverage the capabilities of trusted computing technology, specifically TPM chips. My solution for the dishonest adversarial model is also of independent cryptographic interest. I prove my constructions secure under standard cryptographic assumptions and design experiments for testing the feasibility or practicability of our constructions and benchmark key operations. My experiments show that the proposed ...
Contributing Partner: UNT Libraries
Indoor Localization Using Magnetic Fields

Indoor Localization Using Magnetic Fields

Date: December 2011
Creator: Pathapati Subbu, Kalyan Sasidhar
Description: Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth’s magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth’s magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth’s field with the ferromagnetic fields is described thereby explaining the causes of the ...
Contributing Partner: UNT Libraries
Process-Voltage-Temperature Aware Nanoscale Circuit Optimization

Process-Voltage-Temperature Aware Nanoscale Circuit Optimization

Date: December 2010
Creator: Thakral, Garima
Description: Embedded systems which are targeted towards portable applications are required to have low power consumption because such portable devices are typically powered by batteries. During the memory accesses of such battery operated portable systems, including laptops, cell phones and other devices, a significant amount of power or energy is consumed which significantly affects the battery life. Therefore, efficient and leakage power saving cache designs are needed for longer operation of battery powered applications. Design engineers have limited control over many design parameters of the circuit and hence face many chal-lenges due to inherent process technology variations, particularly on static random access memory (SRAM) circuit design. As CMOS process technologies scale down deeper into the nanometer regime, the push for high performance and reliable systems becomes even more challenging. As a result, developing low-power designs while maintaining better performance of the circuit becomes a very difficult task. Furthermore, a major need for accurate analysis and optimization of various forms of total power dissipation and performance in nanoscale CMOS technologies, particularly in SRAMs, is another critical issue to be considered. This dissertation proposes power-leakage and static noise margin (SNM) analysis and methodologies to achieve optimized static random access memories (SRAMs). Alternate topologies ...
Contributing Partner: UNT Libraries
Incremental Learning with Large Datasets

Incremental Learning with Large Datasets

Date: May 2012
Creator: Giritharan, Balathasan
Description: This dissertation focuses on the novel learning strategy based on geometric support vector machines to address the difficulties of processing immense data set. Support vector machines find the hyper-plane that maximizes the margin between two classes, and the decision boundary is represented with a few training samples it becomes a favorable choice for incremental learning. The dissertation presents a novel method Geometric Incremental Support Vector Machines (GISVMs) to address both efficiency and accuracy issues in handling massive data sets. In GISVM, skin of convex hulls is defined and an efficient method is designed to find the best skin approximation given available examples. The set of extreme points are found by recursively searching along the direction defined by a pair of known extreme points. By identifying the skin of the convex hulls, the incremental learning will only employ a much smaller number of samples with comparable or even better accuracy. When additional samples are provided, they will be used together with the skin of the convex hull constructed from previous dataset. This results in a small number of instances used in incremental steps of the training process. Based on the experimental results with synthetic data sets, public benchmark data sets from ...
Contributing Partner: UNT Libraries
The Influence of Social Network Graph Structure on Disease Dynamics in a Simulated Environment

The Influence of Social Network Graph Structure on Disease Dynamics in a Simulated Environment

Date: December 2010
Creator: Johnson, Tina V.
Description: The fight against epidemics/pandemics is one of man versus nature. Technological advances have not only improved existing methods for monitoring and controlling disease outbreaks, but have also provided new means for investigation, such as through modeling and simulation. This dissertation explores the relationship between social structure and disease dynamics. Social structures are modeled as graphs, and outbreaks are simulated based on a well-recognized standard, the susceptible-infectious-removed (SIR) paradigm. Two independent, but related, studies are presented. The first involves measuring the severity of outbreaks as social network parameters are altered. The second study investigates the efficacy of various vaccination policies based on social structure. Three disease-related centrality measures are introduced, contact, transmission, and spread centrality, which are related to previously established centrality measures degree, betweenness, and closeness, respectively. The results of experiments presented in this dissertation indicate that reducing the neighborhood size along with outside-of-neighborhood contacts diminishes the severity of disease outbreaks. Vaccination strategies can effectively reduce these parameters. Additionally, vaccination policies that target individuals with high centrality are generally shown to be slightly more effective than a random vaccination policy. These results combined with past and future studies will assist public health officials in their effort to minimize the effects ...
Contributing Partner: UNT Libraries
The Value of Everything: Ranking and Association with Encyclopedic Knowledge

The Value of Everything: Ranking and Association with Encyclopedic Knowledge

Date: December 2009
Creator: Coursey, Kino High
Description: This dissertation describes WikiRank, an unsupervised method of assigning relative values to elements of a broad coverage encyclopedic information source in order to identify those entries that may be relevant to a given piece of text. The valuation given to an entry is based not on textual similarity but instead on the links that associate entries, and an estimation of the expected frequency of visitation that would be given to each entry based on those associations in context. This estimation of relative frequency of visitation is embodied in modifications to the random walk interpretation of the PageRank algorithm. WikiRank is an effective algorithm to support natural language processing applications. It is shown to exceed the performance of previous machine learning algorithms for the task of automatic topic identification, providing results comparable to that of human annotators. Second, WikiRank is found useful for the task of recognizing text-based paraphrases on a semantic level, by comparing the distribution of attention generated by two pieces of text using the encyclopedic resource as a common reference. Finally, WikiRank is shown to have the ability to use its base of encyclopedic knowledge to recognize terms from different ontologies as describing the same thing, and thus ...
Contributing Partner: UNT Libraries
Modeling Synergistic Relationships Between Words and Images

Modeling Synergistic Relationships Between Words and Images

Date: December 2012
Creator: Leong, Chee Wee
Description: Texts and images provide alternative, yet orthogonal views of the same underlying cognitive concept. By uncovering synergistic, semantic relationships that exist between words and images, I am working to develop novel techniques that can help improve tasks in natural language processing, as well as effective models for text-to-image synthesis, image retrieval, and automatic image annotation. Specifically, in my dissertation, I will explore the interoperability of features between language and vision tasks. In the first part, I will show how it is possible to apply features generated using evidence gathered from text corpora to solve the image annotation problem in computer vision, without the use of any visual information. In the second part, I will address research in the reverse direction, and show how visual cues can be used to improve tasks in natural language processing. Importantly, I propose a novel metric to estimate the similarity of words by comparing the visual similarity of concepts invoked by these words, and show that it can be used further to advance the state-of-the-art methods that employ corpus-based and knowledge-based semantic similarity measures. Finally, I attempt to construct a joint semantic space connecting words with images, and synthesize an evaluation framework to quantify cross-modal ...
Contributing Partner: UNT Libraries
Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

Date: August 2012
Creator: Mohler, Michael A.G.
Description: In this dissertation, I explore unsupervised techniques for the task of automatic short answer grading. I compare a number of knowledge-based and corpus-based measures of text similarity, evaluate the effect of domain and size on the corpus-based measures, and also introduce a novel technique to improve the performance of the system by integrating automatic feedback from the student answers. I continue to combine graph alignment features with lexical semantic similarity measures and employ machine learning techniques to show that grade assignment error can be reduced compared to a system that considers only lexical semantic measures of similarity. I also detail a preliminary attempt to align the dependency graphs of student and instructor answers in order to utilize a structural component that is necessary to simulate human-level grading of student answers. I further explore the utility of these techniques to several related tasks in natural language processing including the detection of text similarity, paraphrase, and textual entailment.
Contributing Partner: UNT Libraries
Variability-aware low-power techniques for nanoscale mixed-signal circuits.

Variability-aware low-power techniques for nanoscale mixed-signal circuits.

Date: May 2009
Creator: Ghai, Dhruva V.
Description: New circuit design techniques that accommodate lower supply voltages necessary for portable systems need to be integrated into the semiconductor intellectual property (IP) core. Systems that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without causing any performance degradation. Also, the fluctuation of device characteristics caused by process variation in nanometer technologies is seen as design yield loss. The numerous parasitic effects induced by layouts, especially for high-performance and high-speed circuits, pose a problem for IC design. Lack of exact layout information during circuit sizing leads to long design iterations involving time-consuming runs of complex tools. There is a strong need for low-power, high-performance, parasitic-aware and process-variation-tolerant circuit design. This dissertation proposes methodologies and techniques to achieve variability, power, performance, and parasitic-aware circuit designs. Three approaches are proposed: the single iteration automatic approach, the hybrid Monte Carlo and design of experiments (DOE) approach, and the corner-based approach. Widely used mixed-signal circuits such as analog-to-digital converter (ADC), voltage controlled oscillator (VCO), voltage level converter and active pixel sensor (APS) have been designed at nanoscale complementary metal oxide semiconductor (CMOS) and subjected to the proposed methodologies. The effectiveness of the proposed methodologies has ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST