Search Results

Characterization of the Aspartate Transcarbamoylase that is Found in the pyrBCÂ’ Complex of Bordetella Pertussis
An aspartate transcarbamoylase (ATCase) gene from Bordetella pertussis was amplified by PCR and ligated into pT-ADV for expression in Escherichia coli. This particular ATCase (pyrB) was an inactive gene found adjacent to an inactive dihydroorotase (DHOase) gene (pyrC'). This experiment was undertaken to determine whether this pyrB gene was capable of expression alone or if it was capable of expression only when cotransformed with a functional pyrC'. When transformed into E. coli TB2 pyrB-, the gene did not produce any ATCase activity. The gene was then co-transformed into E. coli TB2 pyrB- along with a plasmid containing the pyrC' gene from Pseudomonas aeruginosa and assayed for ATCase activity. Negative results were again recorded.
L-asparaginase II Production by Escherichia coli
Growth of Escherichia coli A-l under aerobic conditions in an enriched medium with a total amount of 0.2 per cent glucose was biphasic and asparaginase II activity was detected after depletion of ammonia from the growth medium in the second phase of growth. Glucose was exhausted two hours before ammonia and three hours before asparaginase II activity was detected. The concentration of 3',5'-cyclic adenosine monophosphate was found to fluctuate when the dissolved oxygen in the medium reached a low level, when glucose and ammonia were exhausted, and when the cells entered the second stationary phase of growth. Culture tube studies of the growth of E_j_ coli A-l in three per cent nutrient broth with varied concentrations of ammonium chloride and potassium nitrate gave lower specific activity of asparaginase II when this was compared to that seen in three per cent nutrient broth alone. The addition of glucose to the same medium before asparaginase II activity was detected resulted in the production of acid by E. coli A-l with cessation of growth; however, addition after L-asparaginase synthesis had started did not affect the specific activity of the enzyme. The addition of ammonium chloride suppressed L-asparaginase synthesis, but addition after enzyme synthesis started had no affect. These findings suggest that asparaginase II is produced by E. coli A-l in response to low concentrations of ammonia and that exogenously supplied nitrogen compounds may play a major role in the regulation of this enzyme. It is suggested that E. coli A-l produced L-asparaginase in order to obtain ammonia for the synthesis of glutamine from glutamate. The synthesis of glutamine from glutamate is the first step of a highly branched pathway which ultimately leads to the synthesis of many of the important macromolecules of the cell.
Back to Top of Screen