## You limited your search to:

**Partner:**UNT Libraries

**Decade:**2000-2009

**Degree Discipline:**Mathematics

**Collection:**UNT Theses and Dissertations

### A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities

**Date:**May 2001

**Creator:**May, Russell J.

**Description:**Assuming the axiom of determinacy, we give a new proof of the strong partition relation on ω1. Further, we present a streamlined proof that J<λ+(a) (the ideal of sets which force cof Π α < λ) is generated from J<λ+(a) by adding a singleton. Combining these results with a polarized partition relation on ω1

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2789/

### Dimensions in random constructions.

**Date:**May 2002

**Creator:**Berlinkov, Artemi

**Description:**We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3160/

### Understanding Ancient Math Through Kepler: A Few Geometric Ideas from The Harmony of the World

**Date:**August 2002

**Creator:**Arthur, Christopher

**Description:**Euclid's geometry is well-known for its theorems concerning triangles and circles. Less popular are the contents of the tenth book, in which geometry is a means to study quantity in general. Commensurability and rational quantities are first principles, and from them are derived at least eight species of irrationals. A recently republished work by Johannes Kepler contains examples using polygons to illustrate these species. In addition, figures having these quantities in their construction form solid shapes (polyhedra) having origins though Platonic philosophy and Archimedean works. Kepler gives two additional polyhedra, and a simple means for constructing the “divine” proportion is given.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3269/

### The Study of Translation Equivalence on Integer Lattices

**Date:**August 2003

**Creator:**Boykin, Charles Martin

**Description:**This paper is a contribution to the study of countable Borel equivalence relations on standard Borel spaces. We concentrate here on the study of the nature of translation equivalence. We study these known hyperfinite spaces in order to gain insight into the approach necessary to classify certain variables as either being hyperfinite or not. In Chapter 1, we will give the basic definitions and examples of spaces used in this work. The general construction of marker sets is developed in this work. These marker sets are used to develop several invariant tilings of the equivalence classes of specific variables . Some properties that are equivalent to hyperfiniteness in the certain space are also developed. Lastly, we will give the new result that there is a continuous injective embedding from certain defined variables.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4345/

### Hyperspace Topologies

**Date:**August 2001

**Creator:**Freeman, Jeannette Broad

**Description:**In this paper we study properties of metric spaces. We consider the collection of all nonempty closed subsets, Cl(X), of a metric space (X,d) and topologies on C.(X) induced by d. In particular, we investigate the Hausdorff topology and the Wijsman topology. Necessary and sufficient conditions are given for when a particular pseudo-metric is a metric in the Wijsman topology. The metric properties of the two topologies are compared and contrasted to show which also hold in the respective topologies. We then look at the metric space R-n, and build two residual sets. One residual set is the collection of uncountable, closed subsets of R-n and the other residual set is the collection of closed subsets of R-n having n-dimensional Lebesgue measure zero. We conclude with the intersection of these two sets being a residual set representing the collection of uncountable, closed subsets of R-n having n-dimensional Lebesgue measure zero.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2902/

### Complemented Subspaces of Bounded Linear Operators

**Date:**August 2003

**Creator:**Bahreini Esfahani, Manijeh

**Description:**For many years mathematicians have been interested in the problem of whether an operator ideal is complemented in the space of all bounded linear operators. In this dissertation the complementation of various classes of operators in the space of all bounded linear operators is considered. This paper begins with a preliminary discussion of linear bounded operators as well as operator ideals. Let L(X, Y ) be a Banach space of all bounded linear operator between Banach spaces X and Y , K(X, Y ) be the space of all compact operators, and W(X, Y ) be the space of all weakly compact operators. We denote space all operator ideals by O.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4349/

### Spaces of operators containing co and/or l ∞ with an application of vector measures.

**Date:**August 2008

**Creator:**Schulle, Polly Jane

**Description:**The Banach spaces L(X, Y), K(X, Y), Lw*(X*, Y), and Kw*(X*, Y) are studied to determine when they contain the classical Banach spaces co or l ∞. The complementation of the Banach space K(X, Y) in L(X, Y) is discussed as well as what impact this complementation has on the embedding of co or l∞ in K(X, Y) or L(X, Y). Results concerning the complementation of the Banach space Kw*(X*, Y) in Lw*(X*, Y) are also explored and how that complementation affects the embedding of co or l ∞ in Kw*(X*, Y) or Lw*(X*, Y). The l p spaces for 1 ≤ p < ∞ are studied to determine when the space of compact operators from one l p space to another contains co. The paper contains a new result which classifies these spaces of operators. Results of Kalton, Feder, and Emmanuele concerning the complementation of K(X, Y) in L(X, Y) are generalized. A new result using vector measures is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and John, and Bator and Lewis as well as a new proof of the fact that l ∞ is prime.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc9036/

### A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional

**Date:**August 2008

**Creator:**Kazemi, Parimah

**Description:**In this work I present a constructive method for finding critical points of the Ginzburg-Landau energy functional using the method of Sobolev gradients. I give a description of the construction of the Sobolev gradient and obtain convergence results for continuous steepest descent with this gradient. I study the Ginzburg-Landau functional with magnetic field and the Ginzburg-Landau functional without magnetic field. I then present the numerical results I obtained by using steepest descent with the discretized Sobolev gradient.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc9075/

### Localized Radial Solutions for Nonlinear p-Laplacian Equation in RN

**Date:**May 2008

**Creator:**Pudipeddi, Sridevi

**Description:**We establish the existence of radial solutions to the p-Laplacian equation ∆p u + f(u)=0 in RN, where f behaves like |u|q-1 u when u is large and f(u) < 0 for small positive u. We show that for each nonnegative integer n, there is a localized solution u which has exactly n zeros. Also, we look for radial solutions of a superlinear Dirichlet problem in a ball. We show that for each nonnegative integer n, there is a solution u which has exactly n zeros. Here we give an alternate proof to that which was given by Castro and Kurepa.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc6059/

### Uniqueness Results for the Infinite Unitary, Orthogonal and Associated Groups

**Date:**May 2008

**Creator:**Atim, Alexandru Gabriel

**Description:**Let H be a separable infinite dimensional complex Hilbert space, let U(H) be the Polish topological group of unitary operators on H, let G be a Polish topological group and φ:G→U(H) an algebraic isomorphism. Then φ is a topological isomorphism. The same theorem holds for the projective unitary group, for the group of *-automorphisms of L(H) and for the complex isometry group. If H is a separable real Hilbert space with dim(H)≥3, the theorem is also true for the orthogonal group O(H), for the projective orthogonal group and for the real isometry group. The theorem fails for U(H) if H is finite dimensional complex Hilbert space.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc6136/