Search Results

Sufficient Conditions for Uniqueness of Positive Solutions and Non Existence of Sign Changing Solutions for Elliptic Dirichlet Problems
In this paper we study the uniqueness of positive solutions as well as the non existence of sign changing solutions for Dirichlet problems of the form $$\eqalign{\Delta u + g(\lambda,\ u) &= 0\quad\rm in\ \Omega,\cr u &= 0\quad\rm on\ \partial\Omega,}$$where $\Delta$ is the Laplace operator, $\Omega$ is a region in $\IR\sp{N}$, and $\lambda>0$ is a real parameter. For the particular function $g(\lambda,\ u)=\vert u\vert\sp{p}u+\lambda$, where $p={4\over N-2}$, and $\Omega$ is the unit ball in $\IR\sp{N}$ for $N\ge3$, we show that there are no sign changing solutions for small $\lambda$ and also we show that there are no large sign changing solutions for $\lambda$ in a compact set. We also prove uniqueness of positive solutions for $\lambda$ large when $g(\lambda,\ u)=\lambda f(u)$, where f is an increasing, sublinear, concave function with f(0) $<$ 0, and the exterior boundary of $\Omega$ is convex. In establishing our results we use a number of methods from non-linear functional analysis such as rescaling arguments, methods of order, estimation near the boundary, and moving plane arguments.
Topics in Fractal Geometry
In this dissertation, we study fractal sets and their properties, especially the open set condition, Hausdorff dimensions and Hausdorff measures for certain fractal constructions.
Minimality of the Special Linear Groups
Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear group SLn(F) with the usual topology induced by F is a minimal topological group. This is accomplished by first proving the minimality of the upper triangular group in SLn(F). The proof for the upper triangular group uses an induction argument on a chain of upper triangular subgroups and relies on general results for locally compact topological groups, quotient groups, and subgroups. Minimality of SLn(F) is concluded by appealing to the associated Lie group decomposition as the product of a compact group and an upper triangular group. We also prove the universal minimality of homeomorphism groups of one dimensional manifolds, and we give a new simple proof of the universal minimality of S∞.
A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities
Assuming the axiom of determinacy, we give a new proof of the strong partition relation on ω1. Further, we present a streamlined proof that J<λ+(a) (the ideal of sets which force cof Π α < λ) is generated from J<λ+(a) by adding a singleton. Combining these results with a polarized partition relation on ω1
Universal Branched Coverings
In this paper, the study of k-fold branched coverings for which the branch set is a stratified set is considered. First of all, the existence of universal k-fold branched coverings over CW-complexes with stratified branch set is proved using Brown's Representability Theorem. Next, an explicit construction of universal k-fold branched coverings over manifolds is given. Finally, some homotopy and homology groups are computed for some specific examples of Universal k-fold branched coverings.
Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems
In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.
π-regular Rings
The dissertation focuses on the structure of π-regular (regular) rings.
Polish Spaces and Analytic Sets
A Polish space is a separable topological space that can be metrized by means of a complete metric. A subset A of a Polish space X is analytic if there is a Polish space Z and a continuous function f : Z —> X such that f(Z)= A. After proving that each uncountable Polish space contains a non-Borel analytic subset we conclude that there exists a universally measurable non-Borel set.
The Pettis Integral and Operator Theory
Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-to­weak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used to construct determining subspaces for T. For example, if T*(Y*) ∩ X is weak* dense in T*(Y*), then T is determined by T*(Y*) ∩ X. Also if ker(T) is weak* closed in X*, then the annihilator of ker(T) (in X) is the unique minimal determining subspace for T.
Three Topics in Descriptive Set Theory
This dissertation deals with three topics in descriptive set theory. First, the order topology is a natural topology on ordinals. In Chapter 2, a complete classification of order topologies on ordinals up to Borel isomorphism is given, answering a question of Benedikt Löwe. Second, a map between separable metrizable spaces X and Y preserves complete metrizability if Y is completely metrizable whenever X is; the map is resolvable if the image of every open (closed) set in X is resolvable in Y. In Chapter 3, it is proven that resolvable maps preserve complete metrizability, generalizing results of Sierpi&#324;ski, Vainštein, and Ostrovsky. Third, an equivalence relation on a Polish space has the Laczkovich-Komjáth property if the following holds: for every sequence of analytic sets such that the limit superior along any infinite set of indices meets uncountably many equivalence classes, there is an infinite subsequence such that the intersection of these sets contains a perfect set of pairwise inequivalent elements. In Chapter 4, it is shown that every coanalytic equivalence relation has the Laczkovich-Komjáth property, extending a theorem of Balcerzak and G&#322;&#261;b.
Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank
Let G be a Lie group acting on a homogeneous space G/K. The center of the universal enveloping algebra of the Lie algebra of G maps homomorphically into the center of the algebra of differential operators on G/K invariant under the action of G. In the case that G is a Jacobi Lie group of rank 2, we prove that this homomorphism is surjective and hence that the center of the invariant differential operator algebra is the image of the center of the universal enveloping algebra. This is an extension of work of Bringmann, Conley, and Richter in the rank 1case.
Level Curves of the Angle Function of a Positive Definite Symmetric Matrix
Given a real N by N matrix A, write p(A) for the maximum angle by which A rotates any unit vector. Suppose that A and B are positive definite symmetric (PDS) N by N matrices. Then their Jordan product {A, B} := AB + BA is also symmetric, but not necessarily positive definite. If p(A) + p(B) is obtuse, then there exists a special orthogonal matrix S such that {A, SBS^(-1)} is indefinite. Of course, if A and B commute, then {A, B} is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that p(A) + p(B) is obtuse, what is the minimal p(S) such that {A, SBS^(-1)} indefinite? In this dissertation we will describe the level curves of the angle function mapping a unit vector x to the angle between x and Ax for a 3 by 3 PDS matrix A, and discuss their interaction with those of a second such matrix.
Determinacy-related Consequences on Limit Superiors
Laczkovich proved from ZF that, given a countable sequence of Borel sets on a perfect Polish space, if the limit superior along every subsequence was uncountable, then there was a particular subsequence whose intersection actually contained a perfect subset. Komjath later expanded the result to hold for analytic sets. In this paper, by adding AD and sometimes V=L(R) to our assumptions, we will extend the result further. This generalization will include the increasing of the length of the sequence to certain uncountable regular cardinals as well as removing any descriptive requirements on the sets.
Graev Metrics and Isometry Groups of Polish Ultrametric Spaces
This dissertation presents results about computations of Graev metrics on free groups and characterizes isometry groups of countable noncompact Heine-Borel Polish ultrametric spaces. In Chapter 2, computations of Graev metrics are performed on free groups. One of the related results answers an open question of Van Den Dries and Gao. In Chapter 3, isometry groups of countable noncompact Heine-Borel Polish ultrametric spaces are characterized. The notion of generalized tree is defined and a correspondence between the isomorphism group of a generalized tree and the isometry group of a Heine-Borel Polish ultrametric space is established. The concept of a weak inverse limit is introduced to capture the characterization of isomorphism groups of generalized trees. In Chapter 4, partial results of isometry groups of uncountable compact ultrametric spaces are given. It turns out that every compact ultrametric space has a unique countable orbital decomposition. An orbital space consists of disjoint orbits. An orbit subspace of an orbital space is actually a compact homogeneous ultrametric subspace.
Traveling Wave Solutions of the Porous Medium Equation
We prove the existence of a one-parameter family of solutions of the porous medium equation, a nonlinear heat equation. In our work, with space dimension 3, the interface is a half line whose end point advances at constant speed. We prove, by using maximum principle, that the solutions are stable under a suitable class of perturbations. We discuss the relevance of our solutions, when restricted to two dimensions, to gravity driven flows of thin films. Here we extend the results of J. Iaia and S. Betelu in the paper "Solutions of the porous medium equation with degenerate interfaces" to a higher dimension.
Real Analyticity of Hausdorff Dimension of Disconnected Julia Sets of Cubic Parabolic Polynomials
Consider a family of cubic parabolic polynomials given by for non-zero complex parameters such that for each the polynomial is a parabolic polynomial, that is, the polynomial has a parabolic fixed point and the Julia set of , denoted by , does not contain any critical points of . We also assumed that for each , one finite critical point of the polynomial escapes to the super-attracting fixed point infinity. So, the Julia sets are disconnected. The concern about the family is that the members of this family are generally not even bi-Lipschitz conjugate on their Julia sets. We have proved that the parameter set is open and contains a deleted neighborhood of the origin 0. Our main result is that the Hausdorff dimension function defined by is real analytic. To prove this we have constructed a holomorphic family of holomorphic parabolic graph directed Markov systems whose limit sets coincide with the Julia sets of polynomials up to a countable set, and hence have the same Hausdorff dimension. Then we associate to this holomorphic family of holomorphic parabolic graph directed Markov systems an analytic family, call it , of conformal graph directed Markov systems with infinite number of edges in order to reduce the problem of real analyticity of Hausdorff dimension for the given family of polynomials to prove the corresponding statement for the family .
Descriptive Set Theory and Measure Theory in Locally Compact and Non-locally Compact Groups
In this thesis we study descriptive-set-theoretic and measure-theoretic properties of Polish groups, with a thematic emphasis on the contrast between groups which are locally compact and those which are not. The work is divided into three major sections. In the first, working jointly with Robert Kallman, we resolve a conjecture of Gleason regarding the Polish topologization of abstract groups of homeomorphisms. We show that Gleason's conjecture is false, and its conclusion is only true when the hypotheses are considerably strengthened. Along the way we discover a new automatic continuity result for a class of functions which behave like but are distinct from functions of Baire class 1. In the second section we consider the descriptive complexity of those subsets of the permutation group S? which arise naturally from the classical Levy-Steinitz series rearrangement theorem. We show that for any conditionally convergent series of vectors in Euclidean space, the sets of permutations which make the series diverge, and diverge properly, are ?03-complete. In the last section we study the phenomenon of Haar null sets a la Christensen, and the closely related notion of openly Haar null sets. We identify and correct a minor error in the proof of Mycielski that a countable union of Haar null sets in a Polish group is Haar null. We show the openly Haar null ideal may be distinct from the Haar null ideal, which resolves an uncertainty of Solecki. We show that compact sets are always Haar null in S? and in any countable product of locally compact non-compact groups, which extends the domain of a result of Dougherty. We show that any countable product of locally compact non-compact groups decomposes into the disjoint union of a meager set and a Haar null set, which gives a partial positive answer to a question of Darji. …
Topological uniqueness results for the special linear and other classical Lie Algebras.
Suppose L is a complete separable metric topological group (ring, field, etc.). L is topologically unique if the Polish topology on L is uniquely determined by its underlying algebraic structure. More specifically, L is topologically unique if an algebraic isomorphism of L with any other complete separable metric topological group (ring, field, etc.) induces a topological isomorphism. A local field is a locally compact topological field with non-discrete topology. The only local fields (up to isomorphism) are the real, complex, and p-adic numbers, finite extensions of the p-adic numbers, and fields of formal power series over finite fields. We establish the topological uniqueness of the special linear Lie algebras over local fields other than the complex numbers (for which this result is not true) in the context of complete separable metric Lie rings. Along the way the topological uniqueness of all local fields other than the field of complex numbers is established, which is derived as a corollary to more general principles which can be applied to a larger class of topological fields. Lastly, also in the context of complete separable metric Lie rings, the topological uniqueness of the special linear Lie algebra over the real division algebra of quaternions, the special orthogonal Lie algebras, and the special unitary Lie algebras is proved.
Quantization Dimension for Probability Definitions
The term quantization refers to the process of estimating a given probability by a discrete probability supported on a finite set. The quantization dimension Dr of a probability is related to the asymptotic rate at which the expected distance (raised to the rth power) to the support of the quantized version of the probability goes to zero as the size of the support is allowed to go to infinity. This assumes that the quantized versions are in some sense ``optimal'' in that the expected distances have been minimized. In this dissertation we give a short history of quantization as well as some basic facts. We develop a generalized framework for the quantization dimension which extends the current theory to include a wider range of probability measures. This framework uses the theory of thermodynamic formalism and the multifractal spectrum. It is shown that at least in certain cases the quantization dimension function D(r)=Dr is a transform of the temperature function b(q), which is already known to be the Legendre transform of the multifractal spectrum f(a). Hence, these ideas are all closely related and it would be expected that progress in one area could lead to new results in another. It would also be expected that the results in this dissertation would extend to all probabilities for which a quantization dimension function exists. The cases considered here include probabilities generated by conformal iterated function systems (and include self-similar probabilities) and also probabilities generated by graph directed systems, which further generalize the idea of an iterated function system.
Hyperspace Topologies
In this paper we study properties of metric spaces. We consider the collection of all nonempty closed subsets, Cl(X), of a metric space (X,d) and topologies on C.(X) induced by d. In particular, we investigate the Hausdorff topology and the Wijsman topology. Necessary and sufficient conditions are given for when a particular pseudo-metric is a metric in the Wijsman topology. The metric properties of the two topologies are compared and contrasted to show which also hold in the respective topologies. We then look at the metric space R-n, and build two residual sets. One residual set is the collection of uncountable, closed subsets of R-n and the other residual set is the collection of closed subsets of R-n having n-dimensional Lebesgue measure zero. We conclude with the intersection of these two sets being a residual set representing the collection of uncountable, closed subsets of R-n having n-dimensional Lebesgue measure zero.
Dimensions in Random Constructions.
We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.
Around the Fibonacci Numeration System
Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.
Borel Determinacy and Metamathematics
Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.
Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis
A "complex" system typically has a relatively large number of dynamically interacting components and tends to exhibit emergent behavior that cannot be explained by analyzing each component separately. A biological neural network is one example of such a system. A multi-agent model of such a network is developed to study the relationships between a network's structure and its spike train output. Using this model, inferences are made about the synaptic structure of networks through cluster analysis of spike train summary statistics A complexity measure for the network structure is also presented which has a one-to-one correspondence with the standard time series complexity measure sample entropy.
Some Fundamental Properties of Power Series
A study to deduce some fundamental properties of power series.
Existence of a Solution for a Wave Equation and an Elliptic Dirichlet Problem
In this paper we consider an existence of a solution for a nonlinear nonmonotone wave equation in [0,π]xR and an existence of a positive solution for a non-positone Dirichlet problem in a bounded subset of R^n.
Applications of Graph Theory and Topology to Combinatorial Designs
This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, then it must have a 1-factor which contains A. The second part of the dissertation is concerned with determining if two designs are isomorphic. Here the v-set is any group G and translation by any element in G gives a design automorphism. Given a design B and its difference family D, two topological spaces, B and D, are constructed. We give topological conditions which imply that a design isomorphism is a group isomorphism.
Containment Relations Between Classes of Regular Ideals in a Ring with Few Zero Divisors
This dissertation focuses on the significance of containment relations between the above mentioned classes of ideals. The main problem considered in Chapter II is determining conditions which lead a ring to be a P-ring, D-ring, or AM-ring when every regular ideal is a P-ideal, D-ideal, or AM-ideal, respectively. We also consider containment relations between classes of regular ideals which guarantee that the ring is a quasi-valuation ring. We continue this study into the third chapter; in particular, we look at the conditions in a quasi-valuation ring which lead to a = Jr, sr - f, and a = v. Furthermore we give necessary and sufficient conditions that a ring be a discrete rank one quasi-valuation ring. For example, if R is Noetherian, then ft = J if and only if R is a discrete rank one quasi-valuation ring.
Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension
This dissertation is a study of the dynamics of one-dimensional unimodal maps and is mainly concerned with those maps which are trapezoidal. The trapezoidal function, f_e, is defined for eΣ(0,1/2) by f_e(x)=x/e for xΣ[0,e], f_e(x)=1 for xΣ(e,1-e), and f_e(x)=(1-x)/e for xΣ[1-e,1]. We study the symbolic dynamics of the kneading sequences and relate them to the analytic dynamics of these maps. Chapter one is an overview of the present theory of Metropolis, Stein, and Stein (MSS). In Chapter two a formula is given that counts the number of MSS sequences of length n. Next, the number of distinct primitive colorings of n beads with two colors, as counted by Gilbert and Riordan, is shown to equal the number of MSS sequences of length n. An algorithm is given that produces a bisection between these two quantities for each n. Lastly, the number of negative orbits of size n for the function f(z)=z^2-2, as counted by P.J. Myrberg, is shown to equal the number of MSS sequences of length n. For an MSS sequence P, let H_ϖ(P) be the unique common extension of the harmonics of P. In Chapter three it is proved that there is exactly one J(P)Σ[0,1] such that the itinerary of λ(P) under the map is λ(P)f_e is H_ϖ(P). In Chapter four it is shown that only period doubling or period halving bifurcations can occur for the family λf_e, λΣ[0,1]. Results concerning how the size of a stable orbit changes as bifurcations of the family λf_e occur are given. Let λΣ[0,1] be such that 1/2 is a periodic point of λf_e. In this case 1/2 is superstable. Chapter five investigates the boundary of the basin of attraction of this stable orbit. An algorithm is given that yields a graph directed construction such that the object constructed is the basin …
Algebraic Numbers and Topologically Equivalent Measures
A set-theoretical point of view to study algebraic numbers has been introduced. We extend a result of Navarro-Bermudez concerning shift invariant measures in the Cantor space which are topologically equivalent to shift invariant measures which correspond to some algebraic integers. It is known that any transcendental numbers and rational numbers in the unit interval are not binomial. We proved that there are algebraic numbers of degree greater than two so that they are binomial numbers. Algebraic integers of degree 2 are proved not to be binomial numbers. A few compositive relations having to do with algebraic numbers on the unit interval have been studied; for instance, rationally related, integrally related, binomially related, B1-related relations. A formula between binomial numbers and binomial coefficients has been stated. A generalized algebraic equation related to topologically equivalent measures has also been stated.
The Reciprocal Dunford-Pettis and Radon-Nikodym Properties in Banach Spaces
In this paper we give a characterization theorem for the reciprocal Dunford-Pettis property as defined by Grothendieck. The relationship of this property to Pelczynski's property V is examined. In particular it is shown that every Banach space with property V has the reciprocal Dunford-Pettis property and an example is given to show that the converse fails to hold. Moreover the characterizations of property V and the reciprocal Dunford-Pettis property lead to the definitions of property V* and property RDP* respectively. Me compare and contrast results for the reciprocal Dunford-Pettis property and property RDP* with those for properties V and V*. In the final chapter we use a result of Brooks to obtain a characterization for the Radon-Nikodým property.
Consistency in Lattices
Let L be a lattice. For x ∈ L, we say x is a consistent join-irreducible if x V y is a join-irreducible of the lattice [y,1] for all y in L. We say L is consistent if every join-irreducible of L is consistent. In this dissertation, we study the notion of consistent elements in semimodular lattices.
Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings
Let K be any field and Q be the rationals. Define K^1[X] = {f(X) e K[X]| the coefficient of X in f(X) is zero} and Q^1β[X] = {f(X) e Q[X]| the coefficent of β1(X) in the binomial expansion of f(X) is zero}, where {β1(X)}^∞ i=0 are the well-known binomial polynomials. In this work, I establish the following results: K^1[X] and Q^1β[X] are one-dimensional, Noetherian, non-Prüfer domains with the two-generator property on ideals. Using the unique factorization structure of the overrings K[X] and Q[X], the nonprincipal ideal structures of both rings are characterized, and from this characterization, necessary and sufficient conditions are found for a nonprincipal ideal to be invertible. The nonprincipal invertible ideals are then characterized in terms of the coefficients of the generators, and an explicit formula for the inverse of any proper invertible ideal is found. Finally, the class groups of both rings are shown to be torsion free abelian groups. Let n be any nonnegative integer. Results similar to the above are found in the generalizations of these two rings, K^n[X] and q^nβ[X], where the coefficients on the first n nonconstant basis elements are zero. For the domains K^1[X] and Q^1β[X], the property of strong two-generation is explored in detail and the following results are established: 1. K^1[X] and Q^1β[X] are not strongly two-generated, 2. In either ring, any polynomial with a constant term, or of degree two or three is a strong two-generator. 3. In K^1[X] any polynomial divisible by X^4 is not a strong two-generator, 4. An ideal I in K^1[X] or Q^1β[X] is strongly two-generated if and only if it is invertible.
R₀ Spaces, R₁ Spaces, And Hyperspaces
The purpose of this paper is to further investigate R0 spaces, R1 spaces, and hyperspaces. The R0 axiom was introduced by N. A. Shanin in 1943. Later, in 1961, A. S. Davis investigated R0 spaces and introduced R1 spaces. Then, in 1975, William Dunham further investigated R1 spaces and proved that several well-known theorems can be generalized from a T2 setting to an R1 setting. In Chapter II R0 and R1 spaces are investigated and additional theorems that can be generalized from a T2 setting to an R1 setting are obtained.
Minimization of a Nonlinear Elasticity Functional Using Steepest Descent
The method of steepest descent is used to minimize typical functionals from elasticity.
Finite Element Solutions to Nonlinear Partial Differential Equations
This paper develops a numerical algorithm that produces finite element solutions for a broad class of partial differential equations. The method is based on steepest descent methods in the Sobolev space H¹(Ω). Although the method may be applied in more general settings, we consider only differential equations that may be written as a first order quasi-linear system. The method is developed in a Hilbert space setting where strong convergence is established for part of the iteration. We also prove convergence for an inner iteration in the finite element setting. The method is demonstrated on Burger's equation and the Navier-Stokes equations as applied to the square cavity flow problem. Numerical evidence suggests that the accuracy of the method is second order,. A documented listing of the FORTRAN code for the Navier-Stokes equations is included.
Operators on Continuous Function Spaces and Weak Precompactness
If T:C(H,X)-->Y is a bounded linear operator then there exists a unique weakly regular finitely additive set function m:-->L(X,Y**) so that T(f) = ∫Hfdm. In this paper, bounded linear operators on C(H,X) are studied in terms the measure given by this representation theorem. The first chapter provides a brief history of representation theorems of these classes of operators. In the second chapter the represenation theorem used in the remainder of the paper is presented. If T is a weakly compact operator on C(H,X) with representing measure m, then m(A) is a weakly compact operator for every Borel set A. Furthermore, m is strongly bounded. Analogous statements may be made for many interesting classes of operators. In chapter III, two classes of operators, weakly precompact and QSP, are studied. Examples are provided to show that if T is weakly precompact (QSP) then m(A) need not be weakly precompact (QSP), for every Borel set A. In addition, it will be shown that weakly precompact and GSP operators need not have strongly bounded representing measures. Sufficient conditions are provided which guarantee that a weakly precompact (QSP) operator has weakly precompact (QSP) values. A sufficient condition for a weakly precomact operator to be strongly bounded is given. In chapter IV, weakly precompact subsets of L1(μ,X) are examined. For a Banach space X whose dual has the Radon-Nikodym property, it is shown that the weakly precompact subsets of L1(μ,X) are exactly the uniformly integrable subsets of L1(μ,X). Furthermore, it is shown that this characterization does not hold in Banach spaces X for which X* does not have the weak Radon-Nikodym property.
Iterative Solution of Linear Boundary Value Problems
The investigation is initially a continuation of Neuberger's work on linear boundary value problems. A very general iterative procedure for solution of these problems is described. The alternating-projection theorem of von Neumann is the mathematical starting point for this study. Later theorems demonstrate the validity of numerical approximation for Neuberger's method under certain conditions. A sampling of differential equations within the scope of our iterative method is given. The numerical evidence is that the procedure works well on neutral-state equations, for which no software is written now.
Universally Measurable Sets And Nonisomorphic Subalgebras
This dissertation is divided into two parts. The first part addresses the following problem: Suppose 𝑣 is a finitely additive probability measure defined on the power set 𝒜 of the integer Z so that each singleton set gets measure zero. Let X be a product space Π/β∈B * Zᵦ where each Zₐ is a copy of the integers. Let 𝒜ᴮ be the algebra of subsets of X generated by the subproducts Π/β∈B * Cᵦ where for all but finitely many β, Cᵦ = Zᵦ. Let 𝑣_B denote the product measure on 𝒜ᴮ which has each factor measure a copy of 𝑣. A subset E of X is said to be 𝑣_B -measurable iff [sic] there is only one finitely additive probability on the algebra generated by 𝒜ᴮ ∪ [E] which extends 𝑣_B. The set E ⊆ X is said to be universally product measurable (u.p.m.) iff [sic] for each finitely additive probability measure μ on 𝒜 which gives each singleton measure zero,E is μ_B -measurable. Two theorems are proved along with generalizations. The second part of this dissertation gives a proof of the following theorem and some generalizations: There are 2ᶜ nonisomorphic subalgebras of the power set algebra of the integers (where c = power of the continuum).
Measurable Selection Theorems for Partitions of Polish Spaces into Gδ Equivalence Classes
Let X be a Polish space and Q a measurable partition of X into Gδ equivalence classes. In 1978, S. M. Srivastava proved the existence of a Borel cross section for Q. He asked whether more can be concluded in case each equivalence class is uncountable. This question is answered here in the affirmative. The main result of the author is a proof that shows the existence of a Castaing Representation for Q.
Radially Symmetric Solutions to a Superlinear Dirichlet Problem in a Ball
In this paper we consider a radially symmetric nonlinear Dirichlet problem in a ball, where the nonlinearity is "superlinear" and "superlinear with jumping."
Dually Semimodular Consistent Lattices
A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implies that a covers a ∧ b. L is consistent if for every join-irreducible j and every element x in L, the element x ∨ j is a join-irreducible in the upper interval [x,l]. In this paper, finite dually semimodular consistent lattices are investigated. Examples of these lattices are the lattices of subnormal subgroups of a finite group. In 1954, R. P. Dilworth proved that in a finite modular lattice, the number of elements covering exactly k elements is equal to the number of elements covered by exactly k elements. Here, it is established that if a finite dually semimodular consistent lattice has the same number of join-irreducibles as meet-irreducibles, then it is modular. Hence, a converse of Dilworth's theorem, in the case when k equals 1, is obtained for finite dually semimodular consistent lattices. Several combinatorial results are shown for finite consistent lattices similar to those already established for finite geometric lattices. The reach of an element x in a lattice L is the difference between the rank of x*, the join of x and all the elements covering x, and the rank of x; the maximum reach of all elements in L is the reach of L. Sharp lower bounds for the total number of elements and the number of elements of a given reach in a semimodular consistent lattice given the rank, the reach, and the number of join-irreducibles are found. Extremal lattices attaining these bounds are described. Similar results are then obtained for finite dually semimodular consistent lattices.
Uniqueness of Positive Solutions for Elliptic Dirichlet Problems
In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB, where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order. We also present a regularity result on linear elliptic equation where a coefficient has critical growth.
Gateaux Differentiable Points of Simple Type
Every continuous convex function defined on a separable Banach space is Gateaux differentiable on a dense G^ subset of the space E [Mazur]. Suppose we are given a sequence (xn) that Is dense in E. Can we always find a Gateaux differentiable point x such that x = z^=^anxn.for some sequence (an) with infinitely many non-zero terms so that Ση∞=1||anxn|| < co ? According to this paper, such points are called of "simple type," and shown to be dense in E. Mazur's theorem follows directly from the result and Rybakov's theorem (A countably additive vector measure F: E -* X on a cr-field is absolutely continuous with respect to |x*F] for some x* e Xs) can be shown without deep measure theoretic Involvement.
Hausdorff, Packing and Capacity Dimensions
In this thesis, Hausdorff, packing and capacity dimensions are studied by evaluating sets in the Euclidean space R^. Also the lower entropy dimension is calculated for some Cantor sets. By incorporating technics of Munroe and of Saint Raymond and Tricot, outer measures are created. A Vitali covering theorem for packings is proved. Methods (by Taylor and Tricot, Kahane and Salem, and Schweiger) for determining the Hausdorff and capacity dimensions of sets using probability measures are discussed and extended. The packing pre-measure and measure are shown to be scaled after an affine transformation. A Cantor set constructed by L.D. Pitt is shown to be dimensionless using methods developed in this thesis. A Cantor set is constructed for which all four dimensions are different. Graph directed constructions (compositions of similitudes follow a path in a directed graph) used by Mauldin and Willjams are presented. Mauldin and Williams calculate the Hausdorff dimension, or, of the object of a graph directed construction and show that if the graph is strongly connected, then the a—Hausdorff measure is positive and finite. Similar results will be shown for the packing dimension and the packing measure. When the graph is strongly connected, there is a constant so that the constant times the Hausdorff measure is greater than or equal to the packing measure when a subset of the realization is evaluated. Self—affine Sierpinski carpets, which have been analyzed by McMullen with respect to their Hausdorff dimension and capacity dimension, are analyzed with respect to their packing dimension. Conditions under which the Hausdorff measure of the construction object is positive and finite are given.
Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions
Hill and Monticino (1998) introduced a constructive method for generating random probability measures with a prescribed mean or distribution on the mean. The method involves sequentially generating an array of barycenters that uniquely defines a probability measure. This work analyzes statistical properties of the measures generated by sequential barycenter array constructions. Specifically, this work addresses how changing the base measures of the construction affects the statististics of measures generated by the SBA construction. A relationship between statistics associated with a finite level version of the SBA construction and the full construction is developed. Monte Carlo statistical experiments are used to simulate the effect changing base measures has on the statistics associated with the finite level construction.
Automorphism Groups of Strong Bruhat Orders of Coxeter Groups
In this dissertation, we describe the automorphism groups for the strong Bruhat orders A_n-1, B_n, and D_n. In particular, the automorphism group of A_n-1 for n ≥ 3 is isomorphic to the dihedral group of order eight, D_4; the automorphism group of B_n for n ≥ 3 is isomorphic to C_2 x C_2 where C_2 is the cyclic group of order two; the automorphism group of D_n for n > 5 and n even is isomorphic to C_2 x C_2 x C_2; and the automorphism group of D_n for n ≥ 5 and n odd is isomorphic to the dihedral group D_4.
The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors
We show that the maximum size of a geometry of rank n excluding the (q + 2)-point line, the 3-wheel W_3, and the 3-whirl W^3 as minor is (n - 1)q + 1, and geometries of maximum size are parallel connections of (q + 1)-point lines. We show that the maximum size of a geometry of rank n excluding the 5-point line, the 4-wheel W_4, and the 4-whirl W^4 as minors is 6n - 5, for n ≥ 3. Examples of geometries having rank n and size 6n - 5 include parallel connections of the geometries V_19 and PG(2,3).
Geometric Problems in Measure Theory and Parametrizations
This dissertation explores geometric measure theory; the first part explores a question posed by Paul Erdös -- Is there a number c > 0 such that if E is a Lebesgue measurable subset of the plane with λ²(E) (planar measure)> c, then E contains the vertices of a triangle with area equal to one? -- other related geometric questions that arise from the topic. In the second part, "we parametrize the theorems from general topology characterizing the continuous images and the homeomorphic images of the Cantor set, C" (abstract, para. 5).
Weakly Dense Subsets of Homogeneous Complete Boolean Algebras
The primary result from this dissertation is following inequality: d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}) in ZFC, where B is a homogeneous complete Boolean algebra, d(B) is the density, wd(B) is the weak density, and c(B) is the cellularity of B. Chapter II of this dissertation is a general overview of homogeneous complete Boolean algebras. Assuming the existence of a weakly inaccessible cardinal, we give an example of a homogeneous complete Boolean algebra which does not attain its cellularity. In chapter III, we prove that for any integer n > 1, wd_2(B) = wd_n(B). Also in this chapter, we show that if X⊂B is κ—weakly dense for 1 < κ < sat(B), then sup{wd_κ(B):κ < sat(B)} = d(B). In chapter IV, we address the following question: If X is weakly dense in a homogeneous complete Boolean algebra B, does there necessarily exist b € B\{0} such that {x∗b: x ∈ X} is dense in B|b = {c € B: c ≤ b}? We show that the answer is no for collapsing algebras. In chapter V, we give new proofs to some well known results concerning supporting antichains. A direct consequence of these results is the relation c(B) < wd(B), i.e., the weak density of a homogeneous complete Boolean algebra B is at least as big as the cellularity. Also in this chapter, we introduce discernible sets. We prove that a discernible set of cardinality no greater than c(B) cannot be weakly dense. In chapter VI, we prove the main result of this dissertation, i.e., d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}). In chapter VII, we list some unsolved problems concerning this dissertation.
Back to Top of Screen