You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science
Temporally Correct Algorithms for Transaction Concurrency Control in Distributed Databases

Temporally Correct Algorithms for Transaction Concurrency Control in Distributed Databases

Access: Use of this item is restricted to the UNT Community.
Date: May 2001
Creator: Tuck, Terry W.
Description: Many activities are comprised of temporally dependent events that must be executed in a specific chronological order. Supportive software applications must preserve these temporal dependencies. Whenever the processing of this type of an application includes transactions submitted to a database that is shared with other such applications, the transaction concurrency control mechanisms within the database must also preserve the temporal dependencies. A basis for preserving temporal dependencies is established by using (within the applications and databases) real-time timestamps to identify and order events and transactions. The use of optimistic approaches to transaction concurrency control can be undesirable in such situations, as they allow incorrect results for database read operations. Although the incorrectness is detected prior to transaction committal and the corresponding transaction(s) restarted, the impact on the application or entity that submitted the transaction can be too costly. Three transaction concurrency control algorithms are proposed in this dissertation. These algorithms are based on timestamp ordering, and are designed to preserve temporal dependencies existing among data-dependent transactions. The algorithms produce execution schedules that are equivalent to temporally ordered serial schedules, where the temporal order is established by the transactions' start times. The algorithms provide this equivalence while supporting currency to the ...
Contributing Partner: UNT Libraries
Computational Complexity of Hopfield Networks

Computational Complexity of Hopfield Networks

Date: August 1998
Creator: Tseng, Hung-Li
Description: There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network.
Contributing Partner: UNT Libraries
Visualization of Surfaces and 3D Vector Fields

Visualization of Surfaces and 3D Vector Fields

Date: August 2002
Creator: Li, Wentong
Description: Visualization of trivariate functions and vector fields with three components in scientific computation is still a hard problem in compute graphic area. People build their own visualization packages for their special purposes. And there exist some general-purpose packages (MatLab, Vis5D), but they all require extensive user experience on setting all the parameters in order to generate images. We present a simple package to produce simplified but productive images of 3-D vector fields. We used this method to render the magnetic field and current as solutions of the Ginzburg-Landau equations on a 3-D domain.
Contributing Partner: UNT Libraries
Intrinsic and Extrinsic Adaptation in a Simulated Combat Environment

Intrinsic and Extrinsic Adaptation in a Simulated Combat Environment

Date: May 1995
Creator: Dombrowsky, Steven P. (Steven Paul)
Description: Genetic algorithm and artificial life techniques are applied to the development of challenging and interesting opponents in a combat-based computer game. Computer simulations are carried out against an idealized human player to gather data on the effectiveness of the computer generated opponents.
Contributing Partner: UNT Libraries
Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique

Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique

Date: December 1997
Creator: Taylor, Pamela A., 1941-
Description: DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets.
Contributing Partner: UNT Libraries
Intelligent Memory Management Heuristics

Intelligent Memory Management Heuristics

Date: December 2003
Creator: Panthulu, Pradeep
Description: Automatic memory management is crucial in implementation of runtime systems even though it induces a significant computational overhead. In this thesis I explore the use of statistical properties of the directed graph describing the set of live data to decide between garbage collection and heap expansion in a memory management algorithm combining the dynamic array represented heaps with a mark and sweep garbage collector to enhance its performance. The sampling method predicting the density and the distribution of useful data is implemented as a partial marking algorithm. The algorithm randomly marks the nodes of the directed graph representing the live data at different depths with a variable probability factor p. Using the information gathered by the partial marking algorithm in the current step and the knowledge gathered in the previous iterations, the proposed empirical formula predicts with reasonable accuracy the density of live nodes on the heap, to decide between garbage collection and heap expansion. The resulting heuristics are tested empirically and shown to improve overall execution performance significantly in the context of the Jinni Prolog compiler's runtime system.
Contributing Partner: UNT Libraries
Performance Evaluation of Data Integrity Mechanisms for Mobile Agents

Performance Evaluation of Data Integrity Mechanisms for Mobile Agents

Access: Use of this item is restricted to the UNT Community.
Date: December 2003
Creator: Gunupudi, Vandana
Description: With the growing popularity of e-commerce applications that use software agents, the protection of mobile agent data has become imperative. To that end, the performance of four methods that protect the data integrity of mobile agents is evaluated. The methods investigated include existing approaches known as the Partial Result Authentication Codes, Hash Chaining, and Set Authentication Code methods, and a technique of our own design, called the Modified Set Authentication Code method, which addresses the limitations of the Set Authentication Code method. The experiments were run using the DADS agent system (developed at the Network Research Laboratory at UNT), for which a Data Integrity Module was designed. The experimental results show that our Modified Set Authentication Code technique performed comparably to the Set Authentication Code method.
Contributing Partner: UNT Libraries
Modeling Complex Forest Ecology in a Parallel Computing Infrastructure

Modeling Complex Forest Ecology in a Parallel Computing Infrastructure

Date: August 2003
Creator: Mayes, John
Description: Effective stewardship of forest ecosystems make it imperative to measure, monitor, and predict the dynamic changes of forest ecology. Measuring and monitoring provides us a picture of a forest's current state and the necessary data to formulate models for prediction. However, societal and natural events alter the course of a forest's development. A simulation environment that takes into account these events will facilitate forest management. In this thesis, we describe an efficient parallel implementation of a land cover use model, Mosaic, and discuss the development efforts to incorporate spatial interaction and succession dynamics into the model. To evaluate the performance of our implementation, an extensive set of simulation experiments was carried out using a dataset representing the H.J. Andrews Forest in the Oregon Cascades. Results indicate that a significant reduction in the simulation execution time of our parallel model can be achieved as compared to uni-processor simulations.
Contributing Partner: UNT Libraries
Improved Approximation Algorithms for Geometric Packing Problems With Experimental Evaluation

Improved Approximation Algorithms for Geometric Packing Problems With Experimental Evaluation

Access: Use of this item is restricted to the UNT Community.
Date: December 2003
Creator: Song, Yongqiang
Description: Geometric packing problems are NP-complete problems that arise in VLSI design. In this thesis, we present two novel algorithms using dynamic programming to compute exactly the maximum number of k x k squares of unit size that can be packed without overlap into a given n x m grid. The first algorithm was implemented and ran successfully on problems of large input up to 1,000,000 nodes for different values. A heuristic based on the second algorithm is implemented. This heuristic is fast in practice, but may not always be giving optimal times in theory. However, over a wide range of random data this version of the algorithm is giving very good solutions very fast and runs on problems of up to 100,000,000 nodes in a grid and different ranges for the variables. It is also shown that this version of algorithm is clearly superior to the first algorithm and has shown to be very efficient in practice.
Contributing Partner: UNT Libraries
Higher Compression from the Burrows-Wheeler Transform with New Algorithms for the List Update Problem

Higher Compression from the Burrows-Wheeler Transform with New Algorithms for the List Update Problem

Date: August 2001
Creator: Chapin, Brenton
Description: Burrows-Wheeler compression is a three stage process in which the data is transformed with the Burrows-Wheeler Transform, then transformed with Move-To-Front, and finally encoded with an entropy coder. Move-To-Front, Transpose, and Frequency Count are some of the many algorithms used on the List Update problem. In 1985, Competitive Analysis first showed the superiority of Move-To-Front over Transpose and Frequency Count for the List Update problem with arbitrary data. Earlier studies due to Bitner assumed independent identically distributed data, and showed that while Move-To-Front adapts to a distribution faster, incurring less overwork, the asymptotic costs of Frequency Count and Transpose are less. The improvements to Burrows-Wheeler compression this work covers are increases in the amount, not speed, of compression. Best x of 2x-1 is a new family of algorithms created to improve on Move-To-Front's processing of the output of the Burrows-Wheeler Transform which is like piecewise independent identically distributed data. Other algorithms for both the middle stage of Burrows-Wheeler compression and the List Update problem for which overwork, asymptotic cost, and competitive ratios are also analyzed are several variations of Move One From Front and part of the randomized algorithm Timestamp. The Best x of 2x - 1 family includes Move-To-Front, ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST