You limited your search to:

  Partner: UNT Libraries
 Department: Department of Physics
Nested Well Plasma Traps

Nested Well Plasma Traps

Date: August 2000
Creator: Dolliver, Darrell
Description: Criteria for the confinement of plasmas consisting of a positive and negative component in Penning type traps with nested electric potential wells are presented. Computational techniques for the self-consistent calculation of potential and plasma density distributions are developed. Analyses are presented of the use of nested well Penning traps for several applications. The analyses include: calculations of timescales relevant to the applications, e.g. reaction, confinement and relaxation timescales, self-consistent computations, and consideration of other physical phenomenon important to the applications. Possible applications of a nested well penning trap include production of high charge state ions, studies of high charge state ions, and production of antihydrogen. In addition the properties of a modified Penning trap consisting of an electric potential well applied along a radial magnetic field are explored.
Contributing Partner: UNT Libraries
Space-Charge Saturation and Current Limits in Cylindrical Drift Tubes and Planar Sheaths

Space-Charge Saturation and Current Limits in Cylindrical Drift Tubes and Planar Sheaths

Date: August 2000
Creator: Stephens, Kenneth Frank
Description: Space-charge effects play a dominant role in many areas of physics. In high-power microwave devices using high-current, relativistic electron beams, it places a limit on the amount of radiation a device can produce. Because the beam's space-charge can actually reflect a portion of the beam, the ability to accurately predict the amount of current a device can carry is needed. This current value is known as the space-charge limited current. Because of the mathematical difficulties, this limit is typically estimated from a one-dimensional theory. This work presents a two-dimensional theory for calculating an upper-bound for the space-charge limited current of relativistic electron beams propagating in grounded coaxial drift tubes. Applicable to annular beams of arbitrary radius and thickness, the theory includes the effect introduced by a finite-length drift tube of circular cross-section. Using Green's second identity, the need to solve Poisson's equation is transferred to solving a Sturm-Liouville eigenvalue problem, which is easily solved by elementary methods. In general, the resulting eigenvalue, which is required to estimate the limiting current, must be numerically determined. However, analytic expressions can be found for frequently encountered limiting cases. Space-charge effects also produce the fundamental collective behavior found in plasmas, especially in plasma sheaths. ...
Contributing Partner: UNT Libraries
Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Date: May 2000
Creator: Guo, Baonian
Description: Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and thereby produce what is called a "soft" error, or Single Event Upset (SEU). Therefore, the response of ICs to natural radiation is of great concern for the reliability of future devices. Immunity to soft errors is listed as a requirement in the 1997 National Technology Roadmap for Semiconductors prepared by the Semiconductor Industry Association in the United States. To design more robust devices, it is essential to create and test accurate models of induced charge collection and transport in semiconductor devices. A heavy ion microbeam produced by an accelerator is an ideal tool to study charge collection processes in ICs and to locate the weak nodes and structures for improvement through hardening design. In this dissertation, the Ion Beam Induced Charge Collection ...
Contributing Partner: UNT Libraries
Growing carbon nanotubes by chemical vapor deposition technique.

Growing carbon nanotubes by chemical vapor deposition technique.

Access: Use of this item is restricted to the UNT Community.
Date: May 2000
Creator: Rajan, Harihar V.
Description: Carbon nanotubes were synthesized in the laboratory using chemical vapor deposition at different methane concentration. I found that a methane concentration of 4 sccm was ideal for well recognizable carbon nanotubes. A higher concentration led to fewer nanotube growth and silicon carbide structure. Coating the sample first with Fe(NO3)3 created a catalyst base on the substrate for the nanotube to adhere and grow on.
Contributing Partner: UNT Libraries
Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

Access: Use of this item is restricted to the UNT Community.
Date: May 2000
Creator: Chen, Yandong
Description: Si nanoparticles are new prospective optoelectronic materials. Unlike bulk Si cry-stals, Si nanoparticles display intriguing room-temperature photoluminescence. A major challenge in the fabrication of Si nanoparticles is the control of their size distribution. The rare-earth element Er has unique photo emission properties, including low pumping power, and a temperature independent, sharp spectrum. The emission wavelength matches the transmission window of optical fibers used in the telecommunications industry. Therefore, the study of Er-doped Si nanoparticles may have practical significance. The goals of the research described in this dissertation are to investigate vapor phase pyrolysis methods and to characterize the microstructure and associated defects, particles size distributions and photoluminescence efficiencies of doped and undoped Si nanoparticles using analytical transmission electron microscopy, high resolution electron microscopy, and optical spectroscopy. Er-doped and undoped Si nanoparticles were synthesized via vapor-phase pyrolysis of disilane at Texas Christian University. To achieve monodisperse size distributions, a process with fast nucleation and slow growth was employed. Disilane was diluted to 0.48% with helium. A horizontal pyrolysis oven was maintained at a temperature of 1000 °C. The oven length was varied from 1.5 cm to 6.0 cm to investigate the influence of oven length on the properties of the nanoparticles. ...
Contributing Partner: UNT Libraries
Scanning Tunneling Microscopy of Homo-Epitaxial Chemical Vapor Deposited Diamond (100) Films

Scanning Tunneling Microscopy of Homo-Epitaxial Chemical Vapor Deposited Diamond (100) Films

Access: Use of this item is restricted to the UNT Community.
Date: May 2000
Creator: Stallcup, Richard E.
Description: Atomic resolution images of hot-tungsten filament chemical-vapor-deposition (CVD) grown epitaxial diamond (100) films obtained in ultrahigh vacuum (UHV) with a scanning tunneling microscope (STM) are reported. A (2x1) dimer surface reconstruction and amorphous atomic regions were observed on the hydrogen terminated (100) surface. The (2x1) unit cell was measured to be 0.51"0.01 x 0.25"0.01 nm2. The amorphous regions were identified as amorphous carbon. After CVD growth, the surface of the epitaxial films was amorphous at the atomic scale. After 2 minutes of exposure to atomic hydrogen at 30 Torr and the sample temperature at 500° C, the surface was observed to consist of amorphous regions and (2x1) dimer reconstructed regions. After 5 minutes of exposure to atomic hydrogen, the surface was observed to consist mostly of (2x1) dimer reconstructed regions. These observations support a recent model for CVD diamond growth that is based on an amorphous carbon layer that is etched or converted to diamond by atomic hydrogen. With further exposure to atomic hydrogen at 500° C, etch pits were observed in the shape of inverted pyramids with {111} oriented sides. The temperature dependence of atomic hydrogen etching of the diamond (100) surface was also investigated using UHV STM, and ...
Contributing Partner: UNT Libraries
Precision Atomic Spectroscopy with an Integrated Electro- Optic Modulator and DBR Diode Laser at 1083nm

Precision Atomic Spectroscopy with an Integrated Electro- Optic Modulator and DBR Diode Laser at 1083nm

Access: Use of this item is restricted to the UNT Community.
Date: December 1999
Creator: Castillega, Jaime
Description: We have explored the use of recently developed high speed integrated electro optic modulators and DBR diode lasers as a tool for precision laser studies of atoms. In particular, we have developed a technique using a high speed modulator as a key element and applied it to the study of the fine structure of the 23P state of atomic helium. This state has been of long standing interest in atomic physics and its study has been the aim of several recent experiments using various precision techniques. We present our method and results, which will describe a new method for determining the fine structure constant, and lead to a precision test of atomic theory.
Contributing Partner: UNT Libraries
Characterization and Field Emission Properties of Mo2C and Diamond Thin Films Deposited on Mo Foils and Tips by Electrophoresis

Characterization and Field Emission Properties of Mo2C and Diamond Thin Films Deposited on Mo Foils and Tips by Electrophoresis

Date: August 1999
Creator: Rouse, Ambrosio A., 1960-
Description: In this dissertation M02C and diamond films deposited by electrophoresis on flat Mo foils and tips have been studied to determine their suitability as field emission tips.
Contributing Partner: UNT Libraries
Photoelectric Emission Measurements for CVD Grown Polycrystalline Diamond Films

Photoelectric Emission Measurements for CVD Grown Polycrystalline Diamond Films

Date: August 1999
Creator: Hassan, Tarek
Description: We examined CVD grown polycrystalline diamond films having different methane concentrations to detect defects and study the possible correlation between the methane concentration used during the growth process and the defect density. SEM and Raman results show that the amorphous and sp2 carbon content of the films increases with methane concentration. Furthermore, photoelectric emission from diamond is confirmed to be a two-photon process, hence the electrons are emitted from normally unoccupied states. We found that the photoelectric yield, for our samples, decreases with the increase in methane concentration. This trend can be accounted for in two different ways: either the types of defects observed in this experiment decrease in density as the methane concentration increases; or, the defect density stays the same or increases, but the increase in methane concentration leads to an increase in the electron affinity, which reduces the overall photoelectric yield.
Contributing Partner: UNT Libraries
Picosecond Dynamics of Free-Carrier Populations, Space-Charge Fields, and Photorefractive Nonlinearities in Zincblende Semiconductors

Picosecond Dynamics of Free-Carrier Populations, Space-Charge Fields, and Photorefractive Nonlinearities in Zincblende Semiconductors

Date: August 1999
Creator: Stark, Thomas S.
Description: Generally, nonlinear optics studies investigate optically-induced changes in refraction or absorption, and their application to spectroscopy or device fabrication. The photorefractive effect is a nonlinear optical effect that occurs in solids, where transport of an optically-induced free-carrier population results in an internal space-charge field, which produces an index change via the linear electrooptic effect. The photorefractive effect has been widely studied for a variety of materials and device applications, mainly because it allows large index changes to be generated with laser beams having only a few milliwatts of average power.Compound semiconductors are important photorefractive materials because they offer a near-infrared optical response, and because their carrier transport properties allow the index change to be generated quickly and efficiently. While many researchers have attempted to measure the fundamental temporal dynamics of the photorefractive effect in semiconductors using continuous-wave, nanosecond- and picosecond-pulsed laser beams, these investigations have been unsuccessful. However, studies with this goal are of clear relevance because they provide information about the fundamental physical processes that produce this effect, as well as the material's speed and efficiency limitations for device applications.In this dissertation, for the first time, we time-resolve the temporal dynamics of the photorefractive nonlinearities in two zincblende semiconductors, ...
Contributing Partner: UNT Libraries
Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

Date: August 1999
Creator: Bernhard, John Michael
Description: The characterization of work functions and field emission stability for molybdenum and iridium oxide coatings was examined. Single emission tips and flat samples of molybdenum and iridium oxide were prepared for characterization. The flat samples were characterized using X-ray Photoelectron Spectroscopy and X-ray diffraction to determine elemental composition, chemical shift, and crystal structure. Flat coatings of iridium oxide were also scanned by Atomic Force Microscopy to examine topography. Work functions were characterized by Ultraviolet Photoelectron Spectroscopy from the flat samples and by Field Emission Electron Distributions from the field emission tips. Field emission characterization was conducted in a custom build analytical chamber capable of measuring Field Emission Electron Distribution and Fowler-Nordheim I-V plots simultaneously to independently evaluate geometric and work function changes. Scanning Electron Microscope pictures were taken of the emission tips before and after field emission characterization to confirm geometric changes. Measurement of emission stability and work functions were the emphasis of this research. In addition, use of iridium oxide coatings to enhance emission stability was evaluated. Molybdenum and iridium oxide, IrO2, were characterized and found to have a work function of 4.6 eV and 4.2 eV by both characterization techniques, with the molybdenum value in agreement with previous ...
Contributing Partner: UNT Libraries
Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Date: May 1999
Creator: Venezia, Vincent C.
Description: High-energy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the near-surface vacancy excess in MeV Si-implanted silicon both during implantation and post-implant annealing. Although previous investigations have identified a vacancy excess in MeV-implanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the free-vacancy supersaturation with the vacancies in clusters. Free-vacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of open-volume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during post-implant thermal processing.
Contributing Partner: UNT Libraries
Charge State Distributions in Molecular Dissociation

Charge State Distributions in Molecular Dissociation

Date: December 1998
Creator: Renfrow, Steven N. (Steven Neal)
Description: The present work provides charge state fractions that may be used to generate TEAMS relative sensitivity factors for impurities in semiconductor materials.
Contributing Partner: UNT Libraries
Fluorine Adsorption and Diffusion in Polycrystalline Silica

Fluorine Adsorption and Diffusion in Polycrystalline Silica

Date: December 1998
Creator: Jin, Jian-Yue
Description: The measurement of fluorine penetration into archeological flint artifacts using Nuclear Reaction Analysis (NRA) has been reported to be a potential dating method. However, the mechanism of how fluorine is incorporated into the flint surface, and finally transported into the bulk is not well understood. This research focuses on the study of the fluorine uptake phenomenon of flint mineral in aqueous fluoride solutions. Both theoretical and experimental approaches have been carried out. In a theoretical approach, a pipe-diffusion model was used to simulate the complicated fluorine transportation problem in flint, in which several diffusion mechanisms may be involved.
Contributing Partner: UNT Libraries
Two-Fold Role of Randomness: A Source of Both Long-Range Correlations and Ordinary Statistical Mechanics

Two-Fold Role of Randomness: A Source of Both Long-Range Correlations and Ordinary Statistical Mechanics

Date: December 1998
Creator: Rocco, A. (Andrea)
Description: The role of randomness as a generator of long range correlations and ordinary statistical mechanics is investigated in this Dissertation. The difficulties about the derivation of thermodynamics from mechanics are pointed out and the connection between the ordinary fluctuation-dissipation process and possible anomalous properties of statistical systems is highlighted.
Contributing Partner: UNT Libraries
On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

Date: August 1998
Creator: Stefancich, Marco
Description: The phenomenon of dynamically induced anomalous diffusion is both the classical and quantum kicked rotor is investigated in this dissertation. We discuss the capability of the quantum mechanical version of the system to reproduce for extended periods the corresponding classical chaotic behavior.
Contributing Partner: UNT Libraries
Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond Films

Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond Films

Date: August 1998
Creator: Akwani, Ikerionwu Asiegbu
Description: The effects of methane (CH4), diborone (B2H6) and nitrogen (N2) concentrations on the structure and photoelectron emission properties of chemical vapor deposition (CVD) polycrystalline diamond films were studied. The diamond films were grown on single-crystal Si substrates using the hot-tungsten filament CVD technique. Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) were used to characterize the different forms of carbon in the films, and the fraction of sp3 carbon to sp3 plus sp2 carbon at the surface of the films, respectively. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the films. The photoelectron emission properties were determined by measuring the energy distributions of photoemitted electrons using ultraviolet photoelectron spectroscopy (UPS), and by measuring the photoelectric current as a function of incident photon energy.
Contributing Partner: UNT Libraries
Synthesis and Study of Engineered Heterogenous Polymer Gels

Synthesis and Study of Engineered Heterogenous Polymer Gels

Date: August 1998
Creator: Chen, Yuanye
Description: This dissertation studies physical properties and technological applications of engineered heterogenous polymer gels. Such gels are synthesized based on modulation of gel chemical nature in space. The shape memory gels have been developed in this study by using the modulated gel technology. At room temperature, they form a straight line. As the temperature is increased, they spontaneously bend or curl into a predetermined shape such as a letter of the alphabet, a numerical number, a spiral, a square, or a fish. The shape changes are reversible. The heterogenous structures have been also obtained on the gel surface. The central idea is to cover a dehydrated gel surface with a patterned mask, then to sputter-deposit a gold film onto it. After removing the mask, a gold pattern is left on the gel surface. Periodical surface array can serve as gratings to diffract light. The grating constant can be continuously changed by the external environmental stimuli such as temperature and electric field. Several applications of gels with periodic surface arrays as sensors for measuring gel swelling ratio, internal strain under an uniaxial stress, and shear modulus have been demonstrated. The porous NIPA gels have been synthesized by suspension technique. Microstructures of newly ...
Contributing Partner: UNT Libraries
On Delocalization Effects in Multidimensional Lattices

On Delocalization Effects in Multidimensional Lattices

Date: May 1998
Creator: Bystrik, Anna
Description: A cubic lattice with random parameters is reduced to a linear chain by the means of the projection technique. The continued fraction expansion (c.f.e.) approach is herein applied to the density of states. Coefficients of the c.f.e. are obtained numerically by the recursion procedure. Properties of the non-stationary second moments (correlations and dispersions) of their distribution are studied in a connection with the other evidences of transport in a one-dimensional Mori chain. The second moments and the spectral density are computed for the various degrees of disorder in the prototype lattice. The possible directions of the further development are outlined. The physical problem that is addressed in the dissertation is the possibility of the existence of a non-Anderson disorder of a specific type. More precisely, this type of a disorder in the one-dimensional case would result in a positive localization threshold. A specific type of such non-Anderson disorder was obtained by adopting a transformation procedure which assigns to the matrix expressing the physics of the multidimensional crystal a tridiagonal Hamiltonian. This Hamiltonian is then assigned to an equivalent one-dimensional tight-binding model. One of the benefits of this approach is that we are guaranteed to obtain a linear crystal with a ...
Contributing Partner: UNT Libraries
Quantum-Confined CdS Nanoparticles on DNA Templates

Quantum-Confined CdS Nanoparticles on DNA Templates

Date: May 1998
Creator: Rho, Young Gyu
Description: As electronic devices became smaller, interest in quantum-confined semiconductor nanostructures increased. Self-assembled mesoscale semiconductor structures of II-VI nanocrystals are an especially exciting subject because of their controllable band gap and unique photophysical properties. Several preparative methods to synthesize and control the sizes of the individual nanocrystallites and the electronic and optical properties have been intensively studied. Fabrication of patterned nanostructures composed of quantum-confined nanoparticles is the next step toward practical applications. We have developed an innovative method to fabricate diverse nanostructures which relies on the size and a shape of a chosen deoxyribonucleic acid (DNA) template.
Contributing Partner: UNT Libraries
Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips

Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips

Date: May 1998
Creator: Lim, Seong-Chu
Description: The growth mechanism of chemical vapor deposition (CVD) grown homo-epitaxial diamond (110) and (111) films was studied using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM). In addition, the field emission properties of diamond coated molybdenum microtips were studied as a function of exposure to different gases.
Contributing Partner: UNT Libraries
The Fractal Stochastic Point Process Model of Molecular Evolution and the Multiplicative Evolution Statistical Hypothesis

The Fractal Stochastic Point Process Model of Molecular Evolution and the Multiplicative Evolution Statistical Hypothesis

Date: May 1997
Creator: Bickel, David R. (David Robert)
Description: A fractal stochastic point process (FSPP) is used to model molecular evolution in agreement with the relationship between the variance and mean numbers of synonymous and nonsynonymous substitutions in mammals. Like other episodic models such as the doubly stochastic Poisson process, this model accounts for the large variances observed in amino acid substitution rates, but unlike other models, it also accounts for the results of Ohta's (1995) analysis of synonymous and nonsynonymous substitutions in mammalian genes. That analysis yields a power-law increase in the index of dispersion and an inverse power-law decrease in the coefficient of variation with the mean number of substitutions, as predicted by the FSPP model but not by the doubly stochastic Poisson model. This result is compatible with the selection theory of evolution and the nearly-neutral theory of evolution.
Contributing Partner: UNT Libraries
Microstructural Studies of Dental Amalgams Using Analytical Transmission Electron Microscopy

Microstructural Studies of Dental Amalgams Using Analytical Transmission Electron Microscopy

Date: May 1997
Creator: Hooghan, Tejpal Kaur
Description: Dental amalgams have been used for centuries as major restorative materials for decaying teeth. Amalgams are prepared by mixing alloy particles which contain Ag, Sn, and Cu as the major constituent elements with liquid Hg. The study of microstructure is essential in understanding the setting reactions and improving the properties of amalgams. Until the work reported in this dissertation, optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used commonly to analyze amalgam microstructures. No previous systematic transmission electron microscopy (TEM) study has been performed due to sample preparation difficulties and composite structure of dental amalgams. The goal of this research was to carry out detailed microstructural and compositional studies of dental amalgams. This was accomplished using the enhanced spatial resolution of the TEM and its associated microanalytical techniques, namely, scanning transmission electron microscopy (STEM), x-ray energy dispersive spectroscopy (XEDS) and micro-microdiffraction (μμD). A new method was developed for thinning amalgam samples to electron transparency using the "wedge technique." Velvalloy, a low-Cu amalgam, and Tytin, a high-Cu amalgam, were the two amalgams characterized. Velvalloy is composed of a Ag₂Hg₃ (γ₁)/HgSn₇₋₉ (γ₂) matrix surrounding unreacted Ag₃Sn (γ) particles. In addition, hitherto uncharacterized reaction layers between Ag₃Sn(γ)/Ag₂Hg₃ (γ₂) and ...
Contributing Partner: UNT Libraries
Model for Long-range Correlations in DNA Sequences

Model for Long-range Correlations in DNA Sequences

Date: December 1996
Creator: Allegrini, Paolo
Description: We address the problem of the DNA sequences developing a "dynamical" method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic, with long-range correlations, and the other random and delta correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules which determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an a-stable Levy process with 1 < a < 2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the "deterministic dynamics" are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the Copying Mistake Map (CMM). We carry out our analysis of several DNA sequences, ...
Contributing Partner: UNT Libraries