You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Materials Science and Engineering
Computational Studies on Structures and Ionic Diffusion of Bioactive Glasses

Computational Studies on Structures and Ionic Diffusion of Bioactive Glasses

Date: August 2014
Creator: Xiang, Ye
Description: Bioactive glasses are a class of synthetic inorganic material that have wide orthopedics, dentistry, tissue engineering and other biomedical applications. The origin of the bioactivity is closely related to the atomic structures of these novel glass materials, which otherwise lack long range order and defies any direct experimental measurements due to their amorphous nature. The structure of bioactive glasses is thus essential for the understanding of bioactive behaviors and eventually rational design of glass compositions. In this dissertation, molecular dynamics (MD) and reverse monte carlo (RMC) based computer simulations have been used to systematically study the atomic structure of three classes of new bioactive glasses: strontium doped 45S5 Bioglass®, ZnO-SrO containing bioactive glasses, and Cao-MgO-P2O5-SiO2 bioactive glasses. Properties such as ionic diffusion that are important to glass dissolution behaviors are also examined as a function of glass compositions. The accuracy of structure model generated by simulation was validated by comparing with various experimental measurements including X-ray/neutron diffraction, NMR and Raman spectroscopy. It is shown in this dissertation that atomistic computer simulations, when integrated with structural and property characterizations, is an effective tool in understanding the structural origin of bioactivity and other properties of amorphous bioactive materials that can lead to ...
Contributing Partner: UNT Libraries
Computational Study of Dislocation Based Mechanisms in Fcc Materials

Computational Study of Dislocation Based Mechanisms in Fcc Materials

Date: August 2014
Creator: Yellakara, Ranga Nikhil
Description: Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 µm under uniaxial tension was simulated using an improvised model by integrating ...
Contributing Partner: UNT Libraries
Gamma Prime Precipitation Mechanisms and Solute Partitioning in Ni-base Alloys

Gamma Prime Precipitation Mechanisms and Solute Partitioning in Ni-base Alloys

Date: August 2014
Creator: Rojhirunsakool, Tanaporn
Description: Nickel-base superalloys have been emerged as materials for gas turbines used for jet propulsion and electricity generation. The strength of the superalloys depends mainly from an ordered precipitates of L12 structure, so called gamma prime (γ’) dispersed within the disorder γ matrix. The Ni-base alloys investigated in this dissertation comprise both model alloy systems based on Ni-Al-Cr and Ni-Al-Co as well as the commercial alloy Rene N5. Classical nucleation and growth mechanism dominates the γ’ precipitation process in slowed-cooled Ni-Al-Cr alloys. The effect of Al and Cr additions on γ’ precipitate size distribution as well as morphological and compositional development of γ’ precipitates were characterized by coupling transmission electron microscopy (TEM) and 3D atom probe (3DAP) techniques. Rapid quenching Ni-Al-Cr alloy experiences a non-classical precipitation mechanism. Structural evolution of the γ’ precipitates formed and subsequent isothermal annealing at 600 °C were investigated by coupling TEM and synchrotron-based high-energy x-ray diffraction (XRD). Compositional evolution of the non-classically formed γ’ precipitates was determined by 3DAP and Langer, Bar-on and Miller (LBM) method. Besides homogeneous nucleation, the mechanism of heterogeneous γ’ precipitation involving a discontinuous precipitation mechanism, as a function of temperature, was the primary focus of study in case of the Ni-Al-Co ...
Contributing Partner: UNT Libraries
Processing, Structure and Tribological Property Relations of Ternary Zn-ti-o and Quaternary Zn-ti-zr-o Nanocrystalline Coatings

Processing, Structure and Tribological Property Relations of Ternary Zn-ti-o and Quaternary Zn-ti-zr-o Nanocrystalline Coatings

Date: August 2014
Creator: Ageh, Victor
Description: Conventional liquid lubricants are faced with limitations under extreme cyclic operating conditions, such as in applications that require lubrication when changing from atmospheric pressure to ultrahigh vacuum and ambient air to dry nitrogen (e.g., satellite components), and room to elevated (>500°C) temperatures (e.g., aerospace bearings). Alternatively, solid lubricant coatings can be used in conditions where synthetic liquid lubricants and greases are not applicable; however, individual solid lubricant phases usually perform best only for a limited range of operating conditions. Therefore, solid lubricants that can adequately perform over a wider range of environmental conditions are needed, especially during thermal cycling with temperatures exceeding 500°C. One potential material class investigated in this dissertation is lubricious oxides, because unlike other solid lubricant coatings they are typically thermodynamically stable in air and at elevated temperatures. While past studies have been focused on binary metal oxide coatings, such as ZnO, there have been very few ternary oxide and no reported quaternary oxide investigations. The premise behind the addition of the third and fourth refractory metals Ti and Zr is to increase the number of hard and wear resistant phases while maintaining solid lubrication with ZnO. Therefore, the major focus of this dissertation is to investigate ...
Contributing Partner: UNT Libraries
Investigations in the Mechanism of Carbothermal Reduction of Yttria Stabilized Zirconia for Ultra-high Temperature Ceramics Application and Its Influence on Yttria Contained in It

Investigations in the Mechanism of Carbothermal Reduction of Yttria Stabilized Zirconia for Ultra-high Temperature Ceramics Application and Its Influence on Yttria Contained in It

Date: May 2014
Creator: Sondhi, Anchal
Description: Zirconium carbide (ZrC) is a high modulus ceramic with an ultra-high melting temperature and, consequently, is capable of withstanding extreme environments. Carbon-carbon composites (CCCs) are important structural materials in future hypersonic aircraft; however, these materials may be susceptible to degradation when exposed to elevated temperatures during extreme velocities. At speeds of exceeding Mach 5, intense heating of leading edges of the aircraft triggers rapid oxidation of carbon in CCCs resulting in degradation of the structure and probable failure. Environmental/thermal barrier coatings (EBC/TBC) are employed to protect airfoil structures from extreme conditions. Yttria stabilized zirconia (YSZ) is a well-known EBC/TBC material currently used to protect metallic turbine blades and other aerospace structures. In this work, 3 mol% YSZ has been studied as a potential EBC/TBC on CCCs. However, YSZ is an oxygen conductor and may not sufficiently slow the oxidation of the underlying CCC. Under appropriate conditions, ZrC can form at the interface between CCC and YSZ. Because ZrC is a poor oxygen ion conductor in addition to its stability at high temperatures, it can reduce the oxygen transport to the CCC and thus increase the service lifetime of the structure. This dissertation investigates the thermodynamics and kinetics of the YSZ/ZrC/CCC ...
Contributing Partner: UNT Libraries
Laser Surface Treatment of Amorphous Metals

Laser Surface Treatment of Amorphous Metals

Date: May 2014
Creator: Katakam, Shravana K.
Description: Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic ...
Contributing Partner: UNT Libraries
Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Date: May 2014
Creator: Borkar, Tushar Murlidhar
Description: Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The present work is an attempt towards investigating the effect of CNT and GNP reinforcements on the mechanical properties of nickel matrix composites. The CNT/Ni (dry milled) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel ~ 160 MPa) and an elongation to failure ~ 30%. In contrast, CNT/Ni (molecular level mixed) exhibited substantially higher tensile yield strength (~ 690 MPa) but limited ductility with an elongation to failure ~ 8%. The Ni-1vol%GNP (dry milled) nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (~40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface, which effectively transfers stress across metal-GNP interface during tensile deformation. A second emphasis of this work was on the detailed 3D microstructural characterization of a new class of Ni-Ti-C based metal matrix composites, developed using the laser engineered net ...
Contributing Partner: UNT Libraries
Thermoplastic and Thermoset Natural Fiber Composite and Sandwich Performance

Thermoplastic and Thermoset Natural Fiber Composite and Sandwich Performance

Access: Use of this item is restricted to the UNT Community.
Date: May 2014
Creator: Yang, Bing
Description: The objective of this thesis is to investigate the effects of adding natural fiber (kenaf fiber, retted kenaf fiber, and sugarcane fiber) into polymer materials. The effects are obtained by considering three main parts. 1. Performance in thermoplastic composites. The effect of fiber retting on polymer composite crystallization and mechanical performance was investigated. PHBV/PBAT in 80/20 blend ratio was modified using 5% by weight kenaf fiber. Dynamic mechanical analysis of the composites was done to investigate the glass transition and the modulus at sub-ambient and ambient temperatures. ESEM was conducted to analyze fiber topography which revealed smoother surfaces on the pectinase retted fibers. 2. Performance in thermoset composites. The effect of the incorporation of natural fibers of kenaf and of sugarcane combined with the polyester resin matrix is investigated. A comparison of mechanical properties of kenaf polyester composite, sugarcane polyester composite and pure polyester in tensile, bending, dynamic mechanical thermal analysis (DMA) and moisture test on performance is measured.. 3. Performance in sandwich composites. The comparison of the performance characteristics and mechanical properties of natural fiber composites panels with soft and rigid foam cores are evaluated. A thorough test of the mechanical behavior of composites sandwich materials in tensile, bending ...
Contributing Partner: UNT Libraries
Dynamic Adhesion and Self-cleaning Mechanisms of Gecko Setae and Spatulae

Dynamic Adhesion and Self-cleaning Mechanisms of Gecko Setae and Spatulae

Date: December 2013
Creator: Xu, Quan
Description: Geckos can freely climb on walls and ceilings against their body weight at speed of over 1ms-1. Switching between attachment and detachment seem simple and easy for geckos, without considering the surface to be dry or wet, smooth or rough, dirty or clean. In addition, gecko can shed dirt particles during use, keeping the adhesive pads clean. Mimicking this biological system can lead to a new class of dry adhesives for various applications. However, gecko’s unique dry self-cleaning mechanism remains unknown, which impedes the development of self-cleaning dry adhesives. In this dissertation we provide new evidence and self-cleaning mechanism to explain how gecko shed particles and keep its sticky feet clean. First we studied the dynamic enhancement observed between micro-sized particles and substrate under dry and wet conditions. The adhesion force of soft (polystyrene) and hard (SiO2 and Al2O3) micro-particles on soft (polystyrene) and hard (fused silica and sapphire) substrates was measured using an atomic force microscope (AFM) with retraction (z-piezo) speed ranging over 4 orders of magnitude. The adhesion is strongly enhanced by the dynamic effect. When the retraction speeds varies from 0.02 µm/s to 156 µm/s, the adhesion force increases by 10% ~ 50% in dry nitrogen while ...
Contributing Partner: UNT Libraries
Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy

Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy

Date: December 2013
Creator: Dendge, Nilesh Bajirao
Description: Magnesium alloys are the lightweight structural materials with high strength to weigh ratio that permits their application in fuel economy sensitive automobile industries. Among the several flavors of of Mg-alloys, precipitation hardenable Mg-rare earth (RE) based alloys have shown good potential due to their favorable creep resistance within a wide window of operating temperatures ranging from 150°C to 300°C. A key aspect of Mg-RE alloys is the presence of precipitate phases that leads to strengthening of such alloys. Several notable works, in literature, have been done to examine the formation of such precipitate phases. However, there are very few studies that evaluated the effect stress induced deformation on the precipitation in Mg-RE alloys. Therefore, the objective of this work is to examine influence of deformation on the precipitation of Mg-Nd based alloys. To address this problem, precipitation in two Mg-Nd based alloys, subjected to two different deformation conditions, and was examined via transmission electron microscopy (TEM) and atom probe tomography (APT). In first deformation condition, Md-2.6wt%Nd alloy was subjected to creep deformation (90MPa / 177ºC) to failure. Effect of stress-induced deformation was examined by comparing and contrasting with precipitation in non-creep tested specimens subjected to isothermal annealing (at 177ºC). In ...
Contributing Partner: UNT Libraries
Integrated Computational and Experimental Approach to Control Physical Texture During Laser Machining of Structural Ceramics

Integrated Computational and Experimental Approach to Control Physical Texture During Laser Machining of Structural Ceramics

Date: December 2013
Creator: Vora, Hitesh D.
Description: The high energy lasers are emerging as an innovative material processing tool to effectively fabricate complex shapes on the hard and brittle structural ceramics, which previously had been near impossible to be machined effectively using various conventional machining techniques. In addition, the in-situ measurement of the thermo-physical properties in the severe laser machining conditions (high temperature, short time duration, and small interaction volume) is an extremely difficult task. As a consequence, it is extremely challenging to investigate the evolution of surface topography through experimental analyses. To address this issue, an integrated experimental and computational (multistep and multiphysics based finite-element modeling) approach was employed to understand the influence of laser processing parameters to effectively control the various thermo-physical effects (recoil pressure, Marangoni convection, and surface tension) during transient physical processes (melting, vaporization) for controlled surface topography (surface finish). The results indicated that the material lost due to evaporation causes an increase in crater depth of machined cavity, whereas liquid expulsion created by the recoil pressure increases the material pileup height around the lip of machined cavity, the major attributes of surface topography (roughness). Also, it was found that the surface roughness increased with increase in laser energy density and pulse rate ...
Contributing Partner: UNT Libraries
Laser Surface Modification on Az31b Mg Alloy for Bio-wettability

Laser Surface Modification on Az31b Mg Alloy for Bio-wettability

Date: December 2013
Creator: Ho, YeeHsien
Description: Laser surface modification of AZ31B Magnesium alloy changes surface composition and roughness to provide improved surface bio-wettability. Laser processing resulted in phase transformation and grain refinement due to rapid quenching effect. Furthermore, instantaneous heating and vaporization resulted in removal of material, leading the textured surface generation. A study was conducted on a continuum-wave diode-pumped ytterbium laser to create multiple tracks for determining the resulting bio-wettability. Five different laser input powers were processed on Mg alloy, and then examined by XRD, SEM, optical profilometer, and contact angle measurement. A finite element based heat transfer model was developed using COMSOL multi-physics package to predict the temperature evolution during laser processing. The thermal histories predicted by the model are used to evaluate the cooling rates and solidification rate and the associated changes in the microstructure. The surface energy of laser surface modification samples can be calculated by measuring the contact angle with 3 different standard liquid (D.I water, Formamide, and 1-Bromonaphthalen). The bio-wettability of the laser surface modification samples can be conducted by simulated body fluid contact angle measurement. The results of SEM, 3D morphology, XRD, and contact angle measurement show that the grain size and roughness play role for wetting behavior of ...
Contributing Partner: UNT Libraries
Nano-crystallization Inhibition in 5 Nm Ru Film Diffusion Barriers for Advanced Cu-interconnect

Nano-crystallization Inhibition in 5 Nm Ru Film Diffusion Barriers for Advanced Cu-interconnect

Date: December 2013
Creator: Sharma, Bed P.
Description: As the semiconductor industries are moving beyond 22 nm node technology, the currently used stacked Ta/TaN diffusion barrier including a copper seed will be unable to fulfill the requirements for the future technologies. Due to its low resistivity and ability to perform galvanic copper fill without a seed layer, ruthenium (Ru) has emerged as a potential copper diffusion barrier. However, its crystallization and columnar nanostructure have been the main cause of barrier failures even at low processing temperatures (300 oC -350 oC). In this study, we have proposed and evaluated three different strategies to improve the performance of the ultrathin Ru film as a diffusion barrier for copper. The first study focused on shallow surface plasma irradiation/amorphization and nitridation of 5 nm Ru films. Systematic studies of amorphization and nitrogen incorporation versus sample bias were performed. XPS, XRD and RBS were used to determine the physico-chemical, crystallization and barrier efficiency of the plasma modified Ru barrier. The nitrogen plasma surface irradiation of Ru films at substrate bias voltage of -350 V showed an improved barrier performance up to 400 oC annealing temperatures. The barrier barely started failing at 450 oC due mainly to nitrogen instability. The second study involved only ...
Contributing Partner: UNT Libraries
Titanium Boride Formation and Its Subsequent Influence on Morphology and Crystallography of Alpha Precipitates in Titanium Alloys

Titanium Boride Formation and Its Subsequent Influence on Morphology and Crystallography of Alpha Precipitates in Titanium Alloys

Date: December 2013
Creator: Nandwana, Peeyush
Description: Over the last two decades there has been an increased interest in understanding the influence of trace boron additions in Ti alloys. These additions refine the prior β grain size in as-cast Ti alloys along with increasing their modulus and yield strength due to the precipitation of TiB. TiB also acts as a heterogeneous nucleation site for α precipitation and has been shown to influence the α phase morphology. B is completely soluble in liquid Ti but has a negligible solubility in both body centered cubic β and hexagonal close packed α phases of Ti. Thus, during solidification of hypoeutectic B containing alloys, B is rejected from β into the liquid where it reacts with Ti to form pristine single crystal whiskers of TiB. Despite a substantial amount of reported experimental work on the characterization of TiB precipitates, its formation mechanism and influence on α phase precipitation are still not clear. The current work is divided into two parts – (i) understanding the mechanism of TiB formation using first principles based density functional theory (DFT) calculations and (ii) elucidating how TiB influences the α phase morphology and crystallography in titanium alloys using electron microscopy techniques. TiB exhibits anisotropic growth morphology ...
Contributing Partner: UNT Libraries
Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys

Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Kinkenon, Douglas
Description: Monolithic composites are needed that combine low friction and wear, high mechanical hardness, and high fracture toughness. Thin films and coatings are often unable to meet this engineering challenge as they can delaminate and fracture during operation ceasing to provide beneficial properties during service life. Two material systems were synthesized by spark plasma sintering (SPS) and were studied for their ability to meet these criteria. A dual hybrid composite was fabricated and consisted of a nickel matrix for fracture toughness, TiC for hardness and graphite for solid/self‐lubrication. An in‐situ reaction during processing resulted in the formation of TiC from elemental Ti and C powders. The composition was varied to determine its effects on tribological behavior. Stellite 21, a cobalt‐chrome‐molybdenum alloy, was also produced by SPS. Stellite 21 has low stacking fault energy and a hexagonal phase which forms during sliding that both contribute to low interfacial shear and friction. Samples were investigated by x‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x‐ray spectroscopy (EDS), and electron back‐scattered diffraction (EBSD). Tribological properties were characterized by pin on disc tribometry and wear rates were determined by profilometry and abrasion testing. Solid/self‐lubrication in the TiC/C/Ni system was investigated by Raman and Auger ...
Contributing Partner: UNT Libraries
Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Date: August 2013
Creator: Baillio, Sarah S.
Description: Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.
Contributing Partner: UNT Libraries
Dislocation Dynamics Simulations of Plasticity in Cu Thin Films

Dislocation Dynamics Simulations of Plasticity in Cu Thin Films

Date: August 2013
Creator: Wu, Han
Description: Strong size effects in plastic deformation of thin films have been experimentally observed, indicating non-traditional deformation mechanisms. These observations require improved understanding of the behavior of dislocation in small size materials, as they are the primary plastic deformation carrier. Dislocation dynamics (DD) is a computational method that is capable of directly simulating the motion and interaction of dislocations in crystalline materials. This provides a convenient approach to study micro plasticity in thin films. While two-dimensional dislocation dynamics simulation in thin film proved that the size effect fits Hall-Petch equation very well, there are issues related to three-dimensional size effects. In this work, three-dimensional dislocation dynamics simulations are used to study model cooper thin film deformation. Grain boundary is modeled as impenetrable obstacle to dislocation motion in this work. Both tension and cyclic loadings are applied and a wide range of size and geometry of thin films are studied. The results not only compare well with experimentally observed size effects on thin film strength, but also provide many details on dislocation processes in thin films, which could greatly help formulate new mechanisms of dislocation-based plasticity.
Contributing Partner: UNT Libraries
Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

Date: August 2013
Creator: Avasarala, Chandana
Description: The present research seeks to characterization of an additively manufactured and heat-treated Ti-xMn gradient alloy, a binary system that has largely been unexplored. In order to rapidly assess this binary system, compositionally graded Ti-xMn (0<x<15 wt%) specimens were fabricated using the LENS (Laser Engineered Net Shaping) and were subsequently heat-treated and characterized using a wide range of techniques. Microstructural changes with respect to the change in thermal treatments, hardness and chemical composition were observed and will be presented. These include assessments of both continuous cooling, leading to observations of both equilibrium and metastable phases, including the titanium martensites, and to direct aging studies looking for composition regimes that produce highly refined alpha precipitates – a subject of great interest given recent understandings of non-classical nucleation and growth mechanisms. The samples were characterized using SEM, EDS, TEM, and XRD and the properties probed using a Vickers Microhardness tester.
Contributing Partner: UNT Libraries
Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication

Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication

Date: August 2013
Creator: Shaikh, Vasim
Description: Flood cooling is primarily used to cool and lubricate the cutting tool and workpiece interface during a machining process. But the adverse health effects caused by the use of flood coolants are drawing manufacturers' attention to develop methods for controlling occupational exposure to cutting fluids. Microlubrication serves as an alternative to flood cooling by reducing the volume of cutting fluid used in the machining process. Microlubrication minimizes the exposure of metal working fluids to the machining operators leading to an economical, safer and healthy workplace environment. In this dissertation, a vegetable based lubricant is used to conduct mist, microstructure and wear analyses during end milling AISI 1018 steel using microlubrication. A two-flute solid carbide cutting tool was used with varying cutting speed and feed rate levels with a constant depth of cut. A full factorial experiment with Multivariate Analysis of Variance (MANOVA) was conducted and regression models were generated along with parameter optimization for the flank wear, aerosol mass concentration and the aerosol particle size. MANOVA indicated that the speed and feed variables main effects are significant, but the interaction of (speed*feed) was not significant at 95% confidence level. The model was able to predict 69.44%, 68.06% and 42.90% of ...
Contributing Partner: UNT Libraries
A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

Date: August 2013
Creator: Behera, Amit Kishan
Description: Metastable b-Ti alloys are titanium alloys with sufficient b stabilizer alloying additions such that it's possible to retain single b phase at room temperature. These alloys are of great advantage compared to a/b alloys since they are easily cold rolled, strip produced and can attain excellent mechanical properties upon age hardening. Beta 21S, a relatively new b titanium alloy in addition to these general advantages is known to possess excellent oxidation and corrosion resistance at elevated temperatures. A homogeneous distribution of fine sized a precipitates in the parent b matrix is known to provide good combination of strength, ductility and fracture toughness. The current work focuses on a study of different mechanisms to engineer homogeneously distributed fine sized a precipitates in the b matrix. The precipitation of metastable phases upon low temperature aging and their influence on a precipitation is studied in detail. The precipitation sequence on direct aging above the w solvus temperature is also assessed. The structural and compositional evolution of precipitate phase is determined using multiple characterization tools. The possibility of occurrence of other non-classical precipitation mechanisms that do not require heterogeneous nucleation sites are also analyzed. Lastly, the influence of interstitial element, oxygen on a precipitation ...
Contributing Partner: UNT Libraries
A Study of Power Generation From a Low-cost Hydrokinetic Energy System

A Study of Power Generation From a Low-cost Hydrokinetic Energy System

Date: August 2013
Creator: Davila Vilchis, Juana Mariel
Description: The kinetic energy in river streams, tidal currents, or other artificial water channels has been used as a feasible source of renewable power through different conversion systems. Thus, hydrokinetic energy conversion systems are attracting worldwide interest as another form of distributed alternative energy. Because these systems are still in early stages of development, the basic approaches need significant research. The main challenges are not only to have efficient systems, but also to convert energy more economically so that the cost-benefit analysis drives the growth of this alternative energy form. One way to view this analysis is in terms of the energy conversion efficiency per unit cost. This study presents a detailed assessment of a prototype hydrokinetic energy system along with power output costs. This experimental study was performed using commercial low-cost blades of 20 in diameter inside a tank with water flow speed up to 1.3 m/s. The work was divided into two stages: (a) a fixed-pitch blade configuration, using a radial permanent magnet generator (PMG), and (b) the same hydrokinetic turbine, with a variable-pitch blade and an axial-flux PMG. The results indicate that even though the efficiency of a simple blade configuration is not high, the power coefficient is ...
Contributing Partner: UNT Libraries
Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

Date: August 2013
Creator: Kami, Pavani
Description: The current study focuses on improving the wear resistance of femoral head component and enhancing the osseo-integration properties of femoral stem component of a hip implant made of a new generation low modulus alloy, Ti-35Nb-7Zr-5Ta or TNZT. Different techniques that were adopted to improve the wear resistance of low-modulus TNZT alloy included; (a) fabrication of graded TNZT-xB (x= 0, 1, 2 wt%) samples using LENS, (b) oxidation, and (c) LASER nitriding of TNZT. TNZT-1B and TNZT-O samples have shown improved wear resistance when tested against UHMWPE ball in SBF medium. A new class of bio-ceramic coatings based on calcium phosphate (CaP), was applied on the TNZT sample surface and was further laser processed with the objective of enhancing their osseo-integration properties. With optimized LASER parameters, TNZT-CaP samples have shown improved corrosion resistance, surface wettability and cellular response when compared to the base TNZT sample.
Contributing Partner: UNT Libraries
Effect of Retting on Surface Chemistry and Mechanical Performance Interactions in Natural Fibers for High Performance Polymer Composites

Effect of Retting on Surface Chemistry and Mechanical Performance Interactions in Natural Fibers for High Performance Polymer Composites

Access: Use of this item is restricted to the UNT Community.
Date: May 2013
Creator: Ramesh, Dinesh
Description: Sustainability through replacement of non-renewable fibers with renewable fibers is an ecological need. Impact of transportation costs from South-east Asia on the life cycle analysis of the composite is detrimental. Kenaf is an easily grown crop in America. Farm based processing involves placing the harvested crop in rivers and ponds, where retting of the fibers from the plant (separation into fibers) can take 2 weeks or more. The objective of this thesis is to analyze industrially viable processes for generating fibers and examine their synergistic impact on mechanical performance, surface topography and chemistry for functional composites. Comparison has been made with commercial and conventional retting process, including alkali retting, enzymatic retting, retting in river and pond water (retting occurs by natural microbial population) with controlled microbial retting. The resulting kenaf fibers were characterized by dynamic mechanical analysis (DMA), Raman spectroscopy (FT-Raman), Fourier transform infrared spectroscopy (FT-IR), polarized optical microscopy (POM), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) optical fluorescence microscopy, atomic force microscopy (AFM) and carbohydrate analysis. DMA results showed that pectinase and microbe treated fibers have superior viscoelastic properties compared to alkali retting. XPS, Raman, FT-IR and biochemical analysis indicated that the controlled microbial and pectinase retting was ...
Contributing Partner: UNT Libraries
An Integrated Approach to Determine Phenomenological Equations in Metallic Systems

An Integrated Approach to Determine Phenomenological Equations in Metallic Systems

Date: December 2012
Creator: Ghamarian, Iman
Description: It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in a+b processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain ...
Contributing Partner: UNT Libraries