You limited your search to:

  Partner: UNT Libraries
 Department: Department of Materials Science and Engineering
Growth Mechanisms, and Mechanical and Thermal Properties of Junctions in 3D Carbon Nanotube-graphene Nano-architectures

Growth Mechanisms, and Mechanical and Thermal Properties of Junctions in 3D Carbon Nanotube-graphene Nano-architectures

Date: December 2014
Creator: Niu, Jianbing
Description: Junctions are the key component for 3D carbon nanotube (CNT)-graphene seamless hybrid nanostructures. Growth mechanism of junctions of vertical CNTs growing from graphene in the presence of iron catalysts was simulated via quantum mechanical molecular dynamics (QM/MD) methods. CNTs growth from graphene with iron catalysts is based on a ‘‘base-growth’’ mechanism, and the junctions were the mixture of C-C and Fe-C covalent bonds. Pure C-C bonded junctions could be obtained by moving the catalyst during CNT growth or etching and annealing after growth. The growth process of 3D CNT-graphene junctions on copper templates with nanoholes was simulated with molecular dynamic (MD) simulation. There are two mechanisms of junction formation: (i) CNT growth over the holes that are smaller than 3 nm, and (ii) CNT growth inside the holes that are larger than 3 nm. The growth process of multi-layer filleted CNT-graphene junctions on the Al2O3 template was also simulated with MD simulation. A simple analytical model is developed to explain that the fillet takes the particular angle (135°). MD calculations show that 135° filleted junction has the largest fracture strength and thermal conductivity at room temperature compared to junctions with 90°,120°, 150°, and 180° fillets. The tensile strengths of the ...
Contributing Partner: UNT Libraries
Laser Surface Alloying of Refractory Metals on Aluminum for Enhanced Corrosion Resistance: Experimental and Computational Approaches

Laser Surface Alloying of Refractory Metals on Aluminum for Enhanced Corrosion Resistance: Experimental and Computational Approaches

Date: December 2014
Creator: Rajamure, Ravi Shanker
Description: Aluminum (Al) and its alloys are widely used in various technological applications, mainly due to the excellent thermal conductivity, non-magnetic, ecofriendly, easy formability and good recyclability. However due to the inferior corrosion resistance its applications are hampered in various engineering sectors. Besides, the corrosion related failures such as leakage of gas from pipeline, catastrophic breakdown of bridges and fire accidents in processing plants further puts the human life in jeopardy. Within the United States over $ 400 billion dollars per year are spent over research to understand and prevent the corrosion related failures. Recently, the development of transition metal(TM) aluminides (AlxTMy, where, TM = Mo, W, Ta, Nb, Cr, Zr and V) has received the global attention mainly due to high strength at elevated temperatures, light-weight, excellent corrosion and wear resistance. In light of this, surface modification via laser surface alloying (LSA) is a promising engineering approach to mitigate the corrosion and wear problems. In the present study the attempts are made to study the Al-Mo, Al-W, Al-Nb, and Al-Ta systems as a potential corrosion resistant coatings on aluminum. The refractory metal (Mo, W, Nb, Ta) precursor deposit was spray coated separately on aluminum substrate and was subsequently surface alloyed ...
Contributing Partner: UNT Libraries
Silver Tantalate: a High Temperature Tribological Investigation

Silver Tantalate: a High Temperature Tribological Investigation

Date: December 2014
Creator: Stone, D’Arcy S.
Description: As technology advances, mechanical and electrical systems are subjugated to intense temperature fluctuations through their service life. Designing coatings that operate in extreme temperatures is, therefore, a continuing challenge within the tribology community. Silver tantalate was chosen for investigation at the atomic level, the physical and chemical properties that influence the thermal, mechanical, and tribological behavior for moving assemblies in high temperature tribological applications. By correlating behavior of internal physical processes to the macro tribological behavior, the tribological community will potentially gain improved predicative performance of solid lubricants in future investigations. Three different approaches were explored for the creation of such materials on Inconel substrates: (1) powders produced using a solid state which were burnished on the surface; (2) monolithic silver tantalate thin films deposited by magnetron sputtering; and, (3) an adaptive tantalum nitride/silver nanocomposite sputter-deposited coating that forms a lubricious silver tantalate oxide on its surface when operated at elevated temperatures. Dry sliding wear tests of the coatings against Si3N4 counterfaces revealed friction coefficients in the 0.06 - 0.15 range at T ~ 750 °C. Reduced friction coefficients were found in nanocomposite materials that contained primarily a AgTaO3 phase with a small amount of segregated Ag phase, as suggested ...
Contributing Partner: UNT Libraries
Structural, Thermal and Acoustic Performance of Polyurethane Foams for Green Buildings

Structural, Thermal and Acoustic Performance of Polyurethane Foams for Green Buildings

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Nar, Mangesh
Description: Decreasing the carbon footprint through use of renewable materials has environmental and societal impact. Foams are a valuable constituent in buildings by themselves or as a core in sandwich composites. Kenaf is a Southeast USA plant that provides renewable filler. The core of the kenaf is porous with a cell size in a 5-10 micrometer range. The use of kenaf core in foams represents a novel multiscalar cellular structural composite. Rigid polyurethane foams were made using free foaming expansion with kenaf core as filler with loadings of 5, 10 and 15 %. Free foaming was found to negatively affect the mechanical properties. An innovative process was developed to introduce a constraint to expansion during foaming. Two expansion ratios were examined: 40 and 60 % (decreasing expansion ratio). MicroCT and SEM analysis showed a varying structure of open and closed cell pores. The mechanical, thermal insulation, acoustic properties were measured. Pure PU foam showed improved cell size uniformity. Introducing kenaf core resulted in decreasing the PU performance in the free expansion case. This was reversed by introducing constraints. To understand the combined impact of having a mixed close cell and open cell architecture, finite element modeling was done using ANSYS. Models ...
Contributing Partner: UNT Libraries
Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Date: August 2014
Creator: Chen, Chao-Hsu
Description: Solid state lithium ion electrolytes are important to the development of next generation safer and high power density lithium ion batteries. Perovskite-structured LLT is a promising solid electrolyte with high lithium ion conductivity. LLT also serves as a good model system to understand lithium ion diffusion behaviors in solids. In this thesis, molecular dynamics and related atomistic computer simulations were used to study the diffusion behavior and diffusion mechanism in bulk crystal and grain boundary in lithium lanthanum titanate (LLT) solid state electrolytes. The effects of defect concentration on the structure and lithium ion diffusion behaviors in LLT were systematically studied and the lithium ion self-diffusion and diffusion energy barrier were investigated by both dynamic simulations and static calculations using the nudged elastic band (NEB) method. The simulation results show that there exist an optimal vacancy concentration at around x=0.067 at which lithium ions have the highest diffusion coefficient and the lowest diffusion energy barrier. The lowest energy barrier from dynamics simulations was found to be around 0.22 eV, which compared favorably with 0.19 eV from static NEB calculations. It was also found that lithium ions diffuse through bottleneck structures made of oxygen ions, which expand in dimension by 8-10% ...
Contributing Partner: UNT Libraries
Comparative Coarsening Kinetics of Gamma Prime Precipitates in Nickel and Cobalt Base Superalloys

Comparative Coarsening Kinetics of Gamma Prime Precipitates in Nickel and Cobalt Base Superalloys

Date: August 2014
Creator: Meher, Subhashish
Description: The increasing technological need to push service conditions of structural materials to higher temperatures has motivated the development of several alloy systems. Among them, superalloys are an excellent candidate for high temperature applications because of their ability to form coherent ordered precipitates, which enable the retention of high strength close to their melting temperature. The accelerated kinetics of solute diffusion, with or without an added component of mechanical stress, leads to coarsening of the precipitates, and results in microstructural degradation, limiting the durability of the materials. Hence, the coarsening of precipitates has been a classical research problem for these alloys in service. The prolonged hunt for an alternative of nickel base superalloys with superior traits has gained hope after the recent discovery of Co-Al-W based alloys, which readily form high temperature g precipitates, similar to Ni base superalloys. In the present study, coarsening behavior of g precipitates in Co-10Al-10W (at. %) has been carried out at 800°C and 900°C. This study has, for the first time, obtained critical coarsening parameters in cobalt-base alloys. Apart from this, it has incorporated atomic scale compositional information across the g/g interfaces into classical Cahn-Hilliard model for a better model of coarsening kinetics. The coarsening ...
Contributing Partner: UNT Libraries
Computational Studies on Structures and Ionic Diffusion of Bioactive Glasses

Computational Studies on Structures and Ionic Diffusion of Bioactive Glasses

Date: August 2014
Creator: Xiang, Ye
Description: Bioactive glasses are a class of synthetic inorganic material that have wide orthopedics, dentistry, tissue engineering and other biomedical applications. The origin of the bioactivity is closely related to the atomic structures of these novel glass materials, which otherwise lack long range order and defies any direct experimental measurements due to their amorphous nature. The structure of bioactive glasses is thus essential for the understanding of bioactive behaviors and eventually rational design of glass compositions. In this dissertation, molecular dynamics (MD) and reverse monte carlo (RMC) based computer simulations have been used to systematically study the atomic structure of three classes of new bioactive glasses: strontium doped 45S5 Bioglass®, ZnO-SrO containing bioactive glasses, and Cao-MgO-P2O5-SiO2 bioactive glasses. Properties such as ionic diffusion that are important to glass dissolution behaviors are also examined as a function of glass compositions. The accuracy of structure model generated by simulation was validated by comparing with various experimental measurements including X-ray/neutron diffraction, NMR and Raman spectroscopy. It is shown in this dissertation that atomistic computer simulations, when integrated with structural and property characterizations, is an effective tool in understanding the structural origin of bioactivity and other properties of amorphous bioactive materials that can lead to ...
Contributing Partner: UNT Libraries
Computational Study of Dislocation Based Mechanisms in Fcc Materials

Computational Study of Dislocation Based Mechanisms in Fcc Materials

Date: August 2014
Creator: Yellakara, Ranga Nikhil
Description: Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 µm under uniaxial tension was simulated using an improvised model by integrating ...
Contributing Partner: UNT Libraries
Gamma Prime Precipitation Mechanisms and Solute Partitioning in Ni-base Alloys

Gamma Prime Precipitation Mechanisms and Solute Partitioning in Ni-base Alloys

Date: August 2014
Creator: Rojhirunsakool, Tanaporn
Description: Nickel-base superalloys have been emerged as materials for gas turbines used for jet propulsion and electricity generation. The strength of the superalloys depends mainly from an ordered precipitates of L12 structure, so called gamma prime (γ’) dispersed within the disorder γ matrix. The Ni-base alloys investigated in this dissertation comprise both model alloy systems based on Ni-Al-Cr and Ni-Al-Co as well as the commercial alloy Rene N5. Classical nucleation and growth mechanism dominates the γ’ precipitation process in slowed-cooled Ni-Al-Cr alloys. The effect of Al and Cr additions on γ’ precipitate size distribution as well as morphological and compositional development of γ’ precipitates were characterized by coupling transmission electron microscopy (TEM) and 3D atom probe (3DAP) techniques. Rapid quenching Ni-Al-Cr alloy experiences a non-classical precipitation mechanism. Structural evolution of the γ’ precipitates formed and subsequent isothermal annealing at 600 °C were investigated by coupling TEM and synchrotron-based high-energy x-ray diffraction (XRD). Compositional evolution of the non-classically formed γ’ precipitates was determined by 3DAP and Langer, Bar-on and Miller (LBM) method. Besides homogeneous nucleation, the mechanism of heterogeneous γ’ precipitation involving a discontinuous precipitation mechanism, as a function of temperature, was the primary focus of study in case of the Ni-Al-Co ...
Contributing Partner: UNT Libraries
Processing, Structure and Tribological Property Relations of Ternary Zn-ti-o and Quaternary Zn-ti-zr-o Nanocrystalline Coatings

Processing, Structure and Tribological Property Relations of Ternary Zn-ti-o and Quaternary Zn-ti-zr-o Nanocrystalline Coatings

Date: August 2014
Creator: Ageh, Victor
Description: Conventional liquid lubricants are faced with limitations under extreme cyclic operating conditions, such as in applications that require lubrication when changing from atmospheric pressure to ultrahigh vacuum and ambient air to dry nitrogen (e.g., satellite components), and room to elevated (>500°C) temperatures (e.g., aerospace bearings). Alternatively, solid lubricant coatings can be used in conditions where synthetic liquid lubricants and greases are not applicable; however, individual solid lubricant phases usually perform best only for a limited range of operating conditions. Therefore, solid lubricants that can adequately perform over a wider range of environmental conditions are needed, especially during thermal cycling with temperatures exceeding 500°C. One potential material class investigated in this dissertation is lubricious oxides, because unlike other solid lubricant coatings they are typically thermodynamically stable in air and at elevated temperatures. While past studies have been focused on binary metal oxide coatings, such as ZnO, there have been very few ternary oxide and no reported quaternary oxide investigations. The premise behind the addition of the third and fourth refractory metals Ti and Zr is to increase the number of hard and wear resistant phases while maintaining solid lubrication with ZnO. Therefore, the major focus of this dissertation is to investigate ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST