You limited your search to:

  Partner: UNT Libraries
 Department: Department of Electrical Engineering
AirSniffer: A Smartphone-Based Sensor Module for Personal Micro-Climate Monitoring
Environmental factors can have a significant impact on an individual's health and well-being, and a primary characteristic of environments is air quality. Air sensing equipment is available to the public, but it is often expensive,stationary, or unusable for persons without technical expertise. The goal of this project is to develop an inexpensive and portable sensor module for public use. The system is capable of measuring temperature in Celsius and Fahrenheit, heat index, relative humidity, and carbon dioxide concentration. The sensor module, referred to as the "sniffer," consists of a printed circuit board that interconnects a carbon dioxide sensor, a temperature/humidity sensor, an Arduino microcontroller, and a Bluetooth module. The sniffer is small enough to be worn as a pendant or a belt attachment, and it is rugged enough to consistently collect and transmit data to a user's smartphone throughout their workday. The accompanying smartphone app uses Bluetooth and GPS hardware to collect data and affix samples with a time stamp and GPS coordinates. The accumulated sensor data is saved to a file on the user's phone, which is then examined on a standard computer. digital.library.unt.edu/ark:/67531/metadc849691/
Implementation of an Unmanned Aerial Vehicle for New Generation Peterbilt Trucks
As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry. digital.library.unt.edu/ark:/67531/metadc849706/
Parameter Estimation of Microwave Filters
Access: Use of this item is restricted to the UNT Community.
The focus of this thesis is on developing theories and techniques to extract lossy microwave filter parameters from data. In the literature, the Cauchy methods have been used to extract filters’ characteristic polynomials from measured scattering parameters. These methods are described and some examples are constructed to test their performance. The results suggest that the Cauchy method does not work well when the Q factors representing the loss of filters are not even. Based on some prototype filters and the relationship between Q factors and the loss, we conduct preliminary studies on alternative representations of the characteristic polynomials. The parameters in these new models are extracted using the Levenberg–Marquardt algorithm to accurately estimate characteristic polynomials and the loss information. digital.library.unt.edu/ark:/67531/metadc822826/
An Arduino Based Control System for a Brackish Water Desalination Plant
Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish desalination plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented. digital.library.unt.edu/ark:/67531/metadc804931/
Design of Frequency Output Pressure Transducer
Piezoelectricity crystal is used in different area in industry, such as downhole oil, gas industry, and ballistics. The piezoelectricity crystals are able to create electric fields due to mechanical deformation called the direct piezoelectric effect, or create mechanical deformation due to the effect of electric field called the indirect piezoelectric effect. In this thesis, piezoelectricity effect is the core part. There are 4 parts in the frequency output pressure transducer: two crystal oscillators, phase-locked loop (PLL), mixer, frequency counter. Crystal oscillator is used to activate the piezoelectricity crystal which is made from quartz. The resonance frequency of the piezoelectricity crystal will be increased with the higher pressure applied. The signal of the resonance frequency will be transmitted to the PLL. The function of the PLL is detect the frequency change in the input signal and makes the output of the PLL has the same frequency and same phase with the input signal. The output of the PLL will be transmitted to a Mixer. The mixer has two inputs and one output. One input signal is from the pressure crystal oscillator and another one is from the reference crystal oscillator. The frequency difference of the two signal will transmitted to the frequency counter from the output of the mixer. Thus, the frequency output pressure transducer with a frequency counter is a portable device which is able to measure the pressure without oscilloscope or computer. digital.library.unt.edu/ark:/67531/metadc804933/
Modeling and Control of a Motor System Using the Lego Ev3 Robot
In this thesis, I present my work on the modeling and control of a motor system using the Lego EV3 robot. The overall goal is to apply introductory systems and controls engineering techniques for estimation and design to a real-world system. First I detail the setup of materials used in this research: the hardware used was the Lego EV3 robot; the software used was the Student 2014 version of Simulink; a wireless network was used to communicate between them using a Netgear WNA1100 wifi dongle. Next I explain the approaches used to model the robot’s motor system: from a description of the basic system components, to data collection through experimentation with a proportionally controlled feedback loop, to parameter estimation (through time-domain specification relationships, Matlab’s curve-fitting toolbox, and a formal least-squares parameter estimation), to the discovery of the effects of frictional disturbance and saturation, and finally to the selection and verification of the final model through comparisons of simulated step responses of the estimated models to the actual time response of the motor system. Next I explore three different types of controllers for use within the motor system: a proportional controller, a lead compensator, and a PID controller. I catalogue the design and performance results – both in simulation and on the real system – of each controller. One controller is then selected to be used within two Controls Systems Engineering final course projects, both involving the robot traveling along a predetermined route. The controller’s performance is analyzed to determine whether it improves upon the accumulation of error in the robot’s position when the projects are executed without control. digital.library.unt.edu/ark:/67531/metadc804943/
A Preliminary Controller Design for Drone Carried Directional Communication System
In this thesis, we conduct a preliminary study on the controller design for directional antenna devices carried by drones. The goal of the control system is to ensure the best alignment between two directional antennas so as to enhance the performance of air-to-air communication between the drones. The control system at the current stage relies on the information received from GPS devices. The control system includes two loops: velocity loop and position loop to suppress wind disturbances and to assure the alignment of two directional antennae. The simulation and animation of directional antennae alignment control for two-randomly moving drones was developed using SIMULINK. To facilitate RSSI-based antenna alignment control to be conducted in the future work, a study on initial scanning techniques is also included at the end of this thesis. digital.library.unt.edu/ark:/67531/metadc804990/
Design of Multi Band Microwave Devices Using Coupled Line Transmission Lines
Multi band technology helps in getting multiple operating frequencies using a single microwave device. This thesis presents the design of dual and tri band microwave devices using coupled transmission line structures. Chapter 2 presents the design of a novel dual band transmission line structure using coupled lines. In chapter 3, Design of a dual band branch line coupler and a dual band Wilkinson power divider are proposed using the novel dual band transmission line structure presented in the previous chapter. In chapter 4, Design of a tri band transmission line structure by extending the dual band structure is presented. The Conclusion and future work are presented in chapter 5. digital.library.unt.edu/ark:/67531/metadc801903/
Dual-Band Quarter Wavelength and Half Wavelength Microstrip Transmission Line Design
The thesis represents the design for dual-band quarter wavelength and half wavelength microstrip transmission line. Chapter 2 proposed the design of a novel dual-band asymmetric pi-shaped short-circuited quarter wavelength microstrip transmission line working at frequencies 1GHz and 1.55 GHz for 50Ω transmission line and at frequencies 1GHz and 1.43GHz for 60Ω transmission line. Chapter 3 proposed the design of a novel dual-band quarter wavelength microstrip transmission line with asymmetrically allocated open stubs and short-circuited stubs working at frequencies 1GHz and 1.32GHz. Chapter 4 proposed the design of dual-band pi-shaped open stub half wavelength microstrip transmission line working at frequencies 1GHz and 2.07GHz. Numerical simulations are performed both in HyperLynx 3D EM and in circuit simulator ADS for all of the proposed designs to measure the return loss (S11) and insertion loss (S12) in dB and phase response for S12 in degree. digital.library.unt.edu/ark:/67531/metadc801931/
Practical Robust MIMO OFDM Communication System for High-Speed Mobile Communication
This thesis presents the design of a communication system (PRCS) which improves on all aspects of the current state of the art 4G communication system Long Term Evolution (LTE) including peak to average power ratio (PAPR), data reliability, spectral efficiency and complexity using the most recent state of the art research in the field combined with novel implementations. This research is relevant and important to the field of electrical and communication engineering because it provides benefits to consumers in the form of more reliable data with higher speeds as well as a reduced burden on hardware original equipment manufacturers (OEMs). The results presented herein show up to a 3 dB reduction in PAPR, less than 10-5 bit errors at 7.5 dB signal to noise ratio (SNR) using 4QAM, up to 3 times increased throughput in the uplink mode and 10 times reduced channel coding complexity. digital.library.unt.edu/ark:/67531/metadc799501/
Quantitative Correlation Analysis of Motor and Dysphonia Features of Parkinsons Disease
The research reported here deals with the early characterization of Parkinson’s disease (PD), the second most common degenerative disease of the human motor system after Alzheimer’s. PD results from the death of dopaminergic neurons in the substantia nigra region of the brain. Its occurrence is highly correlated with the aging population whose numbers increase with the healthcare benefits of a longer life. Observation of motor control symptoms associated with PD, such as gait and speech analysis, is most often used to evaluate, detect, and diagnose PD. Since speech and some delicate motor functions have provided early detection signs of PD, reliable analysis of these features is a promising objective diagnostic technique for early intervention with any remedial measures. We implement and study here three PD diagnostic methods and their correlation between each other’s results and with the motor functions in subjects diagnosed with and without PD. One initial test documented well in the literature deals with feature analysis of voice during phonation to determine dysphonia measures. Features of the motor function of two fingers were extracted in tests titled “Motor function of alternating finger tapping on a computer keyboard” and “Motor function of the index and thumb finger tapping with an accelerometer”, that we objectively scripted. The voice dysphonia measures were extracted using various software packages like PRAAT, Wavesurfer, and Matlab. In the initial test, several robust feature selection algorithms were used to obtain an optimally selected subset of features. We were able to program distance classifiers, support vector machine (SVM), and hierarchical clustering discrimination approaches for the dichotomous identification of non-PD control subjects and people with Parkinson’s (PWP). Validation tests were implemented to verify the accuracy of the classification processes. We determined the extent of functional agreement between voice and motor functions by correlating test results. digital.library.unt.edu/ark:/67531/metadc801902/
WiFi Networks through Directional Antenna: An Experimental Study
In situations where information infrastructure is destroyed or not available, on-demand information infrastructure is pivotal for the success of rescue missions. In this paper, a drone-carried on demand information infrastructure for long-distance WiFi transmission system is developed. It can be used in the areas including emergency response, public event, and battlefield. The WiFi network can be connected to the Internet to extend WiFi access to areas where WiFi and other Internet infrastructures are not available. In order to establish a local area network to propagate WIFI service, directional antennas and wireless routers are used to create it. Due to unstable working condition on the flying drones, a precise heading turning stage is designed to maintain the two directional antennas facing to each other. Even if external interferences change the heading of the drones, the stages will automatically rotate back to where it should be to offset the bias. Also, to maintain the same flying altitude, a ground controller is designed to measure the height of the drones so that the directional antennas can communicate to each other successfully. To verify the design of the whole system, quite a few field experiments were performed. Experiments results indicates the design is reliable, viable and successful. Especially at disaster areas, it’ll help people a lot. digital.library.unt.edu/ark:/67531/metadc799469/
Networking and Decentralized Control in Layered Networks: a Theoretical Study and Test-bed Development
Layered structures are commonly used in communication systems, but their roles in decentralized control are not understood well. In the first part of this thesis, a theoretical study of consensus (a typical decentralized control task) in layered structures is conducted. The unique graph topology approach permits explicit characterization of consensus performance based on simple graphical characteristics of MLMG structures. In the second part of this thesis, a generic LEGO test-bed to mimic multi-domain communication with layered structures is described. A search-and-rescue scenario is implemented to demonstrate the use of the test-bed. digital.library.unt.edu/ark:/67531/metadc700084/
Optimal Sensor Placement for Structural Health Monitoring
In large-scale civil structures, a limited number of sensors are placed to monitor the health of civil structures to reduce maintenance, communication and energy costs. In this thesis, the problem of optimal sensor location placement to infer the health of civil structures is explored. First, a comparative study of approaches from the fields of control engineering and civil engineering is conducted . The widely used civil engineering approaches such as effective independence (EI) and modal assurance criterion (MAC) have limitations because of the negligence of modes and damping parameters. On the other hand, control engineering approaches consider the entire system dynamics using impulse response-type sensor measurement data. Such inference can be formulated as an estimation problem, with the dynamics formulated as a second-order differential equation. The comparative study suggests that damping dynamics play significant impact to the selection of best sensor location---the civil engineering approaches that neglect the damping dynamics lead to very different sensor locations from those of the control engineering approaches. In the second part of the thesis, an initial attempt to directly connect the topological graph of the structure (that defines the damping and stiffness matrices) and the second-order dynamics is conducted. digital.library.unt.edu/ark:/67531/metadc700010/
Reliability of Electronics
The purpose of this research is not to research new technology but how to improve existing technology and understand how the manufacturing process works. Reliability Engineering fall under the category of Quality Control and uses predictions through statistical measurements and life testing to figure out if a specific manufacturing technique will meet customer satisfaction. The research also answers choice of materials and choice of manufacturing process to provide a device that will not only meet but exceed customer demand. Reliability Engineering is one of the final testing phases of any new product development or redesign. digital.library.unt.edu/ark:/67531/metadc700024/
An Application of Digital Video Recording and Off-grid Technology to Burrowing Owl Conservation Research
Through this research, engineering students and conservation biologists constructed an off-grid video system for observing western burrowing owls in El Paso, Texas. The burrowing owl has a declining population and their range decreasing, driving scientists' interest to see inside the den for observing critical nesting behavior. Texas Parks and Wildlife Department (TPWD) biologists wanted videos from inside the dark, isolated hillside owl burrows. This research yielded a replicable multi-camera prototype, empowering others to explore applications of engineering and wildlife monitoring. The remote station used an off-the-shelf video recording system, solar panels, charge controller, and lead acid batteries. Four local K-12 science educators participated in system testing at Lake Ray Roberts State Park through the Research Experiences for Teachers (RET, NSF #1132585) program, as well as four undergraduate engineering students as senior design research. digital.library.unt.edu/ark:/67531/metadc699953/
Design Space Exploration of Domain Specific Cgras Using Crowd-sourcing
CGRAs (coarse grained reconfigurable array architectures) try to fill the gap between FPGAs and ASICs. Over three decades, the research towards CGRA design has produced number of architectures. Each of these designs lie at different points on a line drawn between FPGAs and ASICs, depending on the tradeoffs and design choices made during the design of architectures. Thus, design space exploration (DSE) takes a very important role in the circuit design process. In this work I propose the design space exploration of CGRAs can be done quickly and efficiently through crowd-sourcing and a game driven approach based on an interactive mapping game UNTANGLED and a design environment called SmartBricks. Both UNTANGLED and SmartBricks have been developed by our research team at Reconfigurable Computing Lab, UNT. I present the results of design space exploration of domain-specific reconfigurable architectures and compare the results comparing stripe vs mesh style, heterogeneous vs homogeneous. I also compare the results obtained from different interconnection topologies in mesh. These results show that this approach offers quick DSE for designers and also provides low power architectures for a suite of benchmarks. All results were obtained using standard cell ASICs with 90 nm process. digital.library.unt.edu/ark:/67531/metadc699959/
Dynamic Wifi Fingerprinting Indoor Positioning System
A technique is proposed to improve the accuracy of indoor positioning systems based on WIFI radio-frequency signals by using dynamic access points and fingerprints (DAFs). Moreover, an indoor position system that relies solely in DAFs is proposed. The walking pattern of indoor users is classified as dynamic or static for indoor positioning purposes. I demonstrate that the performance of a conventional indoor positioning system that uses static fingerprints can be enhanced by considering dynamic fingerprints and access points. The accuracy of the system is evaluated using four positioning algorithms and two random access point selection strategies. The system facilitates the location of people where there is no wireless local area network (WLAN) infrastructure deployed or where the WLAN infrastructure has been drastically affected, for example by natural disasters. The system can be used for search and rescue operations and for expanding the coverage of an indoor positioning system. digital.library.unt.edu/ark:/67531/metadc699843/
The Effect of Mobility on Wireless Sensor Networks
Wireless sensor networks (WSNs) have gained attention in recent years with the proliferation of the micro-electro-mechanical systems, which has led to the development of smart sensors. Smart sensors has brought WSNs under the spotlight and has created numerous different areas of research such as; energy consumption, convergence, network structures, deployment methods, time delay, and communication protocols. Convergence rates associated with information propagations of the networks will be questioned in this thesis. Mobility is an expensive process in terms of the associated energy costs. In a sensor network, mobility has significant overhead in terms of closing old connections and creating new connections as mobile sensor nodes move from one location to another. Despite these drawbacks, mobility helps a sensor network reach an agreement more quickly. Adding few mobile nodes to an otherwise static network will significantly improve the network’s ability to reach consensus. This paper shows the effect of the mobility on convergence rate of the wireless sensor networks, through Eigenvalue analysis, modeling and simulation. digital.library.unt.edu/ark:/67531/metadc699868/
An Interactive Framework for Teaching Fundamentals of Digital Logic Design and VLSI Design
Integrated Circuits (ICs) have a broad range of applications in healthcare, military, consumer electronics etc. The acronym VLSI stands for Very Large Scale Integration and is a process of making ICs by placing millions of transistors on a single chip. Because of advancements in VLSI design technologies, ICs are getting smaller, faster in speed and more efficient, making personal devices handy, and with more features. In this thesis work an interactive framework is designed in which the fundamental concepts of digital logic design and VLSI design such as logic gates, MOS transistors, combinational and sequential logic circuits, and memory are presented in a simple, interactive and user friendly way to create interest in students towards engineering fields, especially Electrical Engineering and Computer Engineering. Most of the concepts are explained in this framework by taking the examples which we see in our daily lives. Some of the critical design concerns such as power and performance are presented in an interactive way to make sure that students can understand these significant concepts in an easy and user friendly way. digital.library.unt.edu/ark:/67531/metadc799495/
Teaching Fundamentals of Digital Logic Design and Vlsi Design Using Computational Textiles
This thesis presents teaching fundamentals of digital logic design and VLSI design for freshmen and even for high school students using e-textiles. This easily grabs attention of students as it is creative and interesting. Using e-textiles to project these concepts would be easily understood by students at young age. This involves stitching electronic circuits on a fabric using basic components like LEDs, push buttons and so on. The functioning of these circuits is programmed in Lilypad Arduino. By using this method, students get exposed to basic electronic concepts at early stage which eventually develops interest towards engineering field. digital.library.unt.edu/ark:/67531/metadc699874/
Design and Application of a New Planar Balun
The baluns are the key components in balanced circuits such balanced mixers, frequency multipliers, push–pull amplifiers, and antennas. Most of these applications have become more integrated which demands the baluns to be in compact size and low cost. In this thesis, a new approach about the design of planar balun is presented where the 4-port symmetrical network with one port terminated by open circuit is first analyzed by using even- and odd-mode excitations. With full design equations, the proposed balun presents perfect balanced output and good input matching and the measurement results make a good agreement with the simulations. Second, Yagi-Uda antenna is also introduced as an entry to fully understand the quasi-Yagi antenna. Both of the antennas have the same design requirements and present the radiation properties. The arrangement of the antenna’s elements and the end-fire radiation property of the antenna have been presented. Finally, the quasi-Yagi antenna is used as an application of the balun where the proposed balun is employed to feed a quasi-Yagi antenna. The antenna is working in the S-band radio frequency and achieves a measured 36% fractional bandwidth for return loss less than -10 dB. The antenna demonstrates a good agreement between its measurement and simulation results. The impact of the parasitic director on the antenna’s performance is also investigated. The gain and the frequency range of the antenna have been reduced due to the absence of this element. This reduction presents in simulation and measurement results with very close agreement. digital.library.unt.edu/ark:/67531/metadc500144/
Design of Tunable/Reconfigurable and Compact Microwave Devices
With the rapid development of the modern technology, radio frequency and microwave systems are playing more and more important roles. Since the time the first microwave device was invented, they have been leading not only the military but also our daily life to a new era. In order to make the devices have more practical applications, more and more strict requirements have been imposed. For example, good adaptability, reduced cost and shrank size are highly required. In this thesis, three devices are designed based on this requirement. At first, a symmetric four-port microwave varactor based 90-degree directional coupler with tunable coupling ratios and reconfigurable responses is presented. The proposed coupler is designed based on the modified structure of a crossover, where varactors are loaded. Then, a novel reconfigurable 3-dB directional coupler is presented. Varactors and inductors are loaded to the device to realize the reconfigurable performance. By adjusting the voltage applied to the varactors, the proposed coupler can be reconfigured from a branch-line coupler (90-degree coupler) to a rat-race coupler (180 degree coupler) and vice versa. At last, two types (Type-I and Type-II) of microwave baluns with generalized structures are presented. Different from the conventional transmission-line-based baluns where λ/2 transmission lines or λ/4 coupled lines are used, the proposed baluns are constructed by transmission lines with arbitrary electrical lengths. digital.library.unt.edu/ark:/67531/metadc500093/
Development of a Cost Effective Wireless Sensor System for Indoor Air Quality Monitoring Applications
Poor air quality can greatly affect the public health. Research studies indicate that indoor air can be more polluted than the outdoor air. An indoor air quality monitoring system will help to create an awareness of the quality of air inside which will eventually help in improving it. The objective of this research is to develop a low cost wireless sensor system for indoor air quality monitoring. The major cost reduction of the system is achieved by using low priced sensors. Interface circuits had to be designed to make these sensors more accurate. The system is capable of measuring carbon dioxide, carbon monoxide, ozone, temperature, humidity and volatile organic compounds. The prototype sensor node modules were developed. The sensor nodes were the connected together by Zigbee network. The nodes were developed in such a way that it is compact in size and wireless connection of sensor nodes enable to collect air quality data from multiple locations simultaneously. The collected data was stored in a computer. We employed linear least-square approach for the calibration of each sensor to derive a conversion formula for converting the sensor readings to engineering units. The system was tested with different pollutants and data collected was compared with a professional grade monitoring system for analyzing its performance. The results indicated that the data from our system matched quite well with the professional grade monitoring system. digital.library.unt.edu/ark:/67531/metadc499988/
Development of High Gain Ultraviolet Photo Detectors Based on Zinc Oxide Nanowires
Semiconductor nanowires acts as an emerging class of materials with great potential for applications in future electronic devices. Small size, large surface to volume ratio and high carrier mobility of nanowires make them potentially useful for electronic applications with high integration density. In this thesis, the focus was on the growth of high quality ZnO nanowires, fabrication of field effect transistors and UV- photodetectros based on them. Intrinsic nanowire parameters such as carrier concentration, field effect mobility and resistivity were measured by configuring nanowires as field effect transistors. The main contribution of this thesis is the development of a high gain UV photodetector. A single ZnO nanowire functioning as a UV photodetector showed promising results with an extremely high spectral responsivity of 120 kA/W at wavelength of 370 nm. This corresponds to high photoconductive gain of 2150. To the best of our knowledge, this is the highest responsivity and gain reported so far, the previous values being responsivity=40 kA/W and gain=450. The enhanced photoconductive behavior is attributed to the presence of surface states that acts as hole traps which increase the life time of photogenerated electrons raising the photocurrent. This work provides the evidence of such solid states and preliminary results to modify the surface of ZnO nanowire is also produced. digital.library.unt.edu/ark:/67531/metadc500106/
Dual-band Microwave Device Design
This thesis presents a brief introduction to microwave components and technology. It also presents two novel dual-band designs, their analysis, topology, simulation and fabrication. In chapter 2, a novel dual-band bandpass filter using asymmetric stub-loaded stepped-impedance resonators (SLSIRs) operating at 1 and 2.6 GHz is shown. This type of design applies suitable arrangements to improve the filter’s performance. Then, in chapter 3, a novel dual-band balun (transforms unbalanced input signals to balanced output signals or vice versa) operating at 1.1 and 2 GHz with flexible frequency ratios is presented, which has more advantages in microwave applications. Then, conclusion and future works are discussed in chapter 4. digital.library.unt.edu/ark:/67531/metadc500173/
An Implementation of Consensus Through Bluetooth Communication
This thesis provides an implementation of consensus of multi-agent networked systems. Consensus problem is an important issue of distributed computing and has various algorithms and applications in the field of electronical and computer science. The consensus requests all nodes of a network reach an agreement over a certain measurement. An algorithm of convergent consensus problem is implemented through a small network of Bluetooth communication in the thesis. The connections of the Bluetooth devices are wireless, and the device nodes of the network are driven by C++ software and Winsock API. The simulation results show that the implementation completes all the requirements of the distributed consensus algorithm. digital.library.unt.edu/ark:/67531/metadc500099/
A Lego Mindstorms Nxt Based Test Bench for Multiagent Exploratory Systems and Distributed Network Partitioning
Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for self-partitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the Lego® Mindstorms’ NXT on a graphical programming platform using National Instruments’ LabVIEW™ forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented. digital.library.unt.edu/ark:/67531/metadc500196/
A Low-cost Wireless Sensor Network System Using Raspberry Pi and Arduino for Environmental Monitoring Applications
Sensors are used to convert physical quantity into numerical data. Various types of sensors can be coupled together to make a single node. A distributed array of these nodes can be deployed to collect environmental data by using appropriate sensors. Application of low powered short range radio transceivers as a communication medium between spatially distributed sensor nodes is known as wireless sensor network. In this thesis I build such a network by using Arduino, Raspberry Pi and XBee. My goal was to accomplish a prototype system so that the collected data can be stored and managed both from local and remote locations. The system was targeted for both indoor and outdoor environment. As a part of the development a controlling application was developed to manage the sensor nodes, wireless transmission, to collect and store data using a database management service. Raspberry Pi was used as base station and webserver. Few web based application was developed for configuring the network, real time monitoring, and database management. Whole system functions as a single entity. The use of open source hardware and software made it possible to keep the cost of the system low. The successful development of the system can be considered as a prototype which needs to be expanded for large scale environmental monitoring applications. digital.library.unt.edu/ark:/67531/metadc500182/
Low Leakage Asymmetric Stacked Sram Cell
Memory is an important part of any digital processing system. On-chip SRAM can be found in various levels of the memory hierarchy in a processor and occupies a considerable area of the chip. Leakage is one of the challenges which shrinking of technology has introduced and the leakage of SRAM constitutes a substantial part of the total leakage power of the chip due to its large area and the fact that many of the cells are idle without any access. In this thesis, we introduce asymmetric SRAM cells using stacked transistors which reduce the leakage up to 26% while increasing the delay of the cell by only 1.2% while reducing the read noise margin of the cell by only 15.7%. We also investigate an asymmetric cell configuration in which increases the delay by 33% while reduces the leakage up to 30% and reducing the read noise margin by only 1.2% compared to a regular SRAM cell. digital.library.unt.edu/ark:/67531/metadc500021/
A 018μm Cmos Transmitter for Ecg Signals
Electrocardiography (ECG) signal transmitter is the device used to transmit the electrical signals of the heart to the remote machine. These electrical signals are ECG signals caused due to electrical activities in the heart. ECG signals have very low amplitude and frequency; hence amplification of the signals is needed to strengthen the signal. Conversion of the amplified signal into digital information and transmitting that information without losing any data is the key. This information is further used in monitoring the heart. digital.library.unt.edu/ark:/67531/metadc407805/
A Comprehensive Modeling Framework for Airborne Mobility
Access: Use of this item is restricted to the UNT Community.
Mobility models serve as the foundation for evaluating and designing airborne networks. Due to the significant impact of mobility models on the network performance, mobility models for airborne networks (ANs) must realistically capture the attributes of ANs. In this paper, I develop a comprehensive modeling framework for ANs. The work I have done is concluded as the following three parts. First, I perform a comprehensive and comparative analysis of AN mobility models and evaluate the models based on several metrics: 1) networking performance, 2) ability to capture the mobility attributes of ANs, 3) randomness levels and 4) associated applications. Second, I develop two 3D mobility models and realistic boundary models. The mobility models follow physical laws behind aircraft maneuvering and therefore capture the characteristics of aircraft trajectories. Third, I suggest an estimation procedure to extract parameters in one of the models that I developed from real flight test data. The good match between the estimated trajectories and real flight trajectories also validate the suitability of the model. The mobility models and the estimation procedure lead to the creation of “realistic” simulation and evaluation environment for airborne networks. digital.library.unt.edu/ark:/67531/metadc407760/
Parameter Estimation Using Consensus Building Strategies with Application to Sensor Networks
Sensor network plays a significant role in determining the performance of network inference tasks. A wireless sensor network with a large number of sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in WSN is developing an efficient protocol which has a significant impact on the convergence of the network. Parameter estimation is one of the most important applications of sensor network. In order to model such large and complex networks for estimation, efficient strategies and algorithms which take less time to converge are being developed. To deal with this challenge, an approach of having multilayer network structure to estimate parameter and reach convergence in less time is estimated by comparing it with known gossip distributed algorithm. Approached Multicast multilayer algorithm on a network structure of Gaussian mixture model with two components to estimate parameters were compared and simulated with gossip algorithm. Both the algorithms were compared based on the number of iterations the algorithms took to reach convergence by using Expectation Maximization Algorithm.Finally a series of theoretical and practical results that explicitly showed that Multicast works better than gossip in large and complex networks for estimation in consensus building strategies. digital.library.unt.edu/ark:/67531/metadc407815/
Design and Application of Phased Array System
Since its invention, phased array has been extensively applied in both military and civil areas. The applications include target detecting and tracking, space probe communication, broadcasting, human-machine interfaces, and remote sensing. Although the phased array applications show a broad range of potential market, there are some limitations of phased array's development: high cost, complex structure, narrow bandwidth, and high power consumption. Therefore, novel ideas are needed to reduce these constraints. In this thesis, several new approaches about the design and application of phased array are presents. First, the principle of phased array and fundamental design equations are introduced. Second, a new application of phased array antenna for radar respiration measurement is presented. By integrating a 4×4 Butler matrix with four-element antenna array, there will be four distinct main beams in radiation pattern. This new approach can improve the measurement accuracy and realize a high detecting rate. Third, a compact phased array antenna system based on dual-band operations is introduced. Dual-band function can make N-antenna system obtain 2N unique radiation beams (N is an integer) and achieve a significant size reduction compared to the conventional single-band system. To verify the design concept, a four-element phased array antenna working at 5GHz and 8GHz is designed and fabricated. The measurement results make a good agreement with the simulations. Finally, a novel architecture of steering phase feeding network by using bi-directional series-fed topology is presented. This bi-directional series-fed network needs less phase shifters and realizes steering phase function by applying control voltage. digital.library.unt.edu/ark:/67531/metadc283830/
Synthesis and Design of Microwave Filters and Duplexers with Single and Dual Band Responses
In this thesis the general Chebyshev filter synthesis procedure to generate transfer and reflection polynomials and coupling matrices were described. Key concepts such as coupled resonators, non-resonant nodes have been included. This is followed by microwave duplexer synthesis. Next, a technique to design dual band filter has been described including ways to achieve desired return loss and rejection levels at specific bands by manipulating the stopbands and transmission zeros. The concept of dual band filter synthesis has been applied on the synthesis of microwave duplexer to propose a method to synthesize dual band duplexers. Finally a numerical procedure using Cauchy method has been described to estimate the filter and duplexer polynomials from measured responses. The concepts in this thesis can be used to make microwave filters and duplexers more compact, efficient and cost effective. digital.library.unt.edu/ark:/67531/metadc283787/
Data Transmission in Quantized Consensus
In the world of networked system, average consensus is an important dimension of co-ordinate control and cooperation. Since the communication medium is digital, real value cannot be transmitted and we need to perform quantization before data transmission. But for the quantization, error is introduced in exact value and initial average is lost. Based on this limitation, my 16 bit quantization method (sending MSB in 1-4 cycle and MSB+LSB in 5th cycle) reduces error significantly and preserves initial average. Besides, it works on all types of graphs (star, complete, ring, random geometric graph). My other algorithm, distributing averaging algorithm (PQDA) with probabilistic quantization also works on random geometric graph, star, ring and slow co-herency graph. It shows significant reduced error and attain strict consensus. digital.library.unt.edu/ark:/67531/metadc271874/
Design of a Dual Band Gan Pa Utilizing Dual Band Impedance Transformers
This thesis discusses the design, fabrication, and testing of a high efficiency, dual band radio frequency power amplifier. While it is difficult to demonstrate an exact mode of operation for power amplifiers at radio frequencies, based on the characteristics of the transistor itself, the argument can be made that our high efficiency performance is due to an approximation to class E operation. The PA is designed around a CGH40025 transistor manufactured by Cree, Inc, which has developed a very useful nonlinear model of its transistor, which allows use of software load/source pull methods to determine optimum impedances to be presented to the gate and drain (hereafter referred to as source and load) of the transistor at each band of operation. A recent work on dual-band impedance matching is then used to design distributed element networks in order to present conjugate matches of these impedances to the transistor. This is followed by a careful layout, after which the PA is then fabricated on a low-impedance substrate using a LPKF Protomat S63 rapid prototyping machine. Measurements of gain and drain current provide values for power-added-efficiency. Simulated gains were 21 and 18 dB at 800 MHz and 1.85 GHz, respectively, with PAE around 63% for both bands. Measurements taken from the fabricated PA showed gains of 20 and 16 dB at each band, but PAE of 80% at 800 MHz and 43% at 1.85 GHz. digital.library.unt.edu/ark:/67531/metadc271879/
Design of a Wideband Class J Power Amplifier
A conventional RF power amplifier will convert the low powered radio frequency signals into high powered signals. Along with the expected ability to increase the communication distance, data transfer rates, RF power amplifiers also have many applications which include military radar system, whether forecasting, etc. The main objective of any power amplifier research is to increase the efficiency while maintaining linearity and broadening the frequency of operation. The main motivation for the renewed interest in PA technology comes from the technical challenges and the economics of modern digital communication systems. Modern communications require high linear power amplifiers and in order to reduce the complete system cost, it is necessary to have a single broadband power amplifier, which can amplify multiple carriers. The improvement in the efficiency of the power amplifier increases the battery life and also reduces the cooling requirements for the same output power. In this thesis, I aim to design and build a wideband class J power amplifier suitable for modern communications. For wideband operation of the GaN technology PA, a bandwidth extension design method is studied and implemented. The simulation results are proved to have a good argument with the theoretical calculations. digital.library.unt.edu/ark:/67531/metadc271882/
Characterization of Ecg Signal Using Programmable System on Chip
Electrocardiography (ECG) monitor is a medical device for recording the electrical activities of the heart using electrodes placed on the body. There are many ECG monitors in the market but it is essential to find the accuracy with which they generate results. Accuracy depends on the processing of the ECG signal which contains several noises and the algorithms used for detecting peaks. Based on these peaks the abnormality in the functioning of the heart can be estimated. Hence this thesis characterizes the ECG signal which helps to detect the abnormalities and determine the accuracy of the system. digital.library.unt.edu/ark:/67531/metadc177242/
Development of Wireless Sensor Network System for Indoor Air Quality Monitoring
This thesis describes development of low cost indoor air quality (IAQ) monitoring system for research. It describes data collection of various parameters concentration present in indoor air and sends data back to host PC for further processing. Thesis gives detailed information about hardware and software implementation of IAQ monitoring system. Also discussed are building wireless ZigBee network, creating user friendly graphical user interface (GUI) and analysis of obtained results in comparison with professional benchmark system to check system reliability. Throughputs obtained are efficient enough to use system as a reliable IAQ monitor. digital.library.unt.edu/ark:/67531/metadc177181/
Data Compression Using a Multi-residue System (Mrs)
Access: Use of this item is restricted to the UNT Community.
This work presents a novel technique for data compression based on multi-residue number systems. The basic theorem is that an under-determined system of congruences could be solved to accomplish data compression for a signal satisfying continuity of its information content and bounded in peak-to -peak amplitude by the product of relatively prime moduli,. This thesis investigates this property and presents quantitative results along with MATLAB codes. Chapter 1 is introductory in nature and Chapter 2 deals in more detail with the basic theorem. Chapter 3 explicitly mentions the assumptions made and chapter 4 shows alternative solutions to the Chinese remainder theorem. Chapter 5 explains the experiments in detail whose results are mentioned in chapter 6. Chapter 7 concludes with a summary and suggestions for future work. digital.library.unt.edu/ark:/67531/metadc149639/
An Interactive Tool to Investigate the Inference Performance of Network Dynamics From Data
Network structure plays a significant role in determining the performance of network inference tasks. An interactive tool to study the dependence of network topology on estimation performance was developed. The tool allows end-users to easily create and modify network structures and observe the performance of pole estimation measured by Cramer-Rao bounds. The tool also automatically suggests the best measurement locations to maximize estimation performance, and thus finds its broad applications on the optimal design of data collection experiments. Finally, a series of theoretical results that explicitly connect subsets of network structures with inference performance are obtained. digital.library.unt.edu/ark:/67531/metadc149617/
Baseband Noise Suppression in Ofdm Using Kalman Filter
As the technology is advances the reduced size of hardware gives rise to an additive 1/f baseband noise. This additive 1/f noise is a system noise generated due to miniaturization of hardware and affects the lower frequencies. Though 1/f noise does not show much effect in wide band channels because of its nature to affect only certain frequencies, 1/f noise becomes a prominent in OFDM communication systems where narrow band channels are used. in this thesis, I study the effects of 1/f noise on the OFDM systems and implement algorithms for estimation and suppression of the noise using Kalman filter. Suppression of the noise is achieved by subtracting the estimated noise from the received noise. I show that the performance of the system is considerably improved by applying the 1/f noise suppression. digital.library.unt.edu/ark:/67531/metadc115147/
Implementation of Wireless Communications on Gnu Radio
This thesis investigates the design and implementation of wireless communication system over the GNU Radio. Wireless applications are on the rise with advent of new devices, therefore there is a need to transfer the hardware complexity to software. This development enables software radio function with minimum hardware dependency. the purpose of this thesis is to design a system that will transmit compressed data via Software Defined Radio (SDR). Some parameters such as modulation scheme, bit rate can be changed to achieve the desired quality of service. in this thesis GNU (GNU’s not unix) radio is used while the hardware structure is Universal Software Radio Peripheral (USRP). in order to accomplish the goal, a compression technique called H264 (MPEG_4) encoding is applied for converting data into compressed format. the encoder was implemented in C++ to get compressed data. After encoding, the transmitter reads the compressed data and starts modulation. After modulation, the transmitter put the packets into USRP and sends it to the receiver. Once packets are received they are demodulated and then decoded to recover the original data. digital.library.unt.edu/ark:/67531/metadc115130/
Communication System over Gnu Radio and OSSIE
GNU Radio and OSSIE (Open-Source SCA (Software communication architecture) Implementation-Embedded) are two open source software toolkits for SDR (Software Defined Radio) developments, both of them can be supported by USRP (Universal Software Radio Peripheral). In order to compare the performance of these two toolkits, an FM receiver over GNU Radio and OSSIE are tested in my thesis, test results are showed in Chapter 4 and Chapter 5. Results showed that the FM receiver over GNU Radio has better performance, due to the OSSIE is lack of synchronization between USRP interface and the modulation /demodulation components. Based on this, the SISO (Single Input Single Output) communication system over GNU Radio is designed to transmit and receive sound or image files between two USRP equipped with RFX2400 transceiver at 2.45G frequency. Now, GNU Radio and OSSIE are widely used for academic research, but the future work based on GNU Radio and OSSIE can be designed to support MIMO, sensor network, and real time users etc. digital.library.unt.edu/ark:/67531/metadc103299/
Development Of A Testbed For Multimedia Environmental Monitoring
Multimedia environmental monitoring involves capturing valuable visual and audio information from the field station. This will permit the environmentalists and researchers to analyze the habitat and vegetation of a region with respect to other environmental specifics like temperature, soil moisture, etc. This thesis deals with the development of a test bed for multimedia monitoring by capturing image information and making it available for the public. A USB camera and a Single board computer are used to capture images at a specified frequency. A web-client is designed to display the image data and establish a secured remote access to reconfigure the field station. The development includes two modes of image acquisition including a basic activity recognition algorithm. Good quality images are captured with the cost for development of the system being less than 2 hundred dollars. digital.library.unt.edu/ark:/67531/metadc103342/
Development of Indium Oxide Nanowires as Efficient Gas Sensors
Access: Use of this item is restricted to the UNT Community.
Crystalline indium oxide nanowires were synthesized following optimization of growth parameters. Oxygen vacancies were found to impact the optical and electronic properties of the as-grown nanowires. Photoluminescence measurements showed a strong U.V emission peak at 3.18 eV and defect peaks in the visible region at 2.85 eV, 2.66 eV and 2.5 eV. The defect peaks are attributed to neutral and charged states of oxygen vacancies. Post-growth annealing in oxygen environment and passivation with sulphur are shown to be effective in reducing the intensity of the defect induced emission. The as-grown nanowires connected in an FET type of configuration shows n-type conductivity. A single indium oxide nanowire with ohmic contacts was found to be sensitive to gas molecules adsorbed on its surface. digital.library.unt.edu/ark:/67531/metadc103318/
Development of Silicon Nanowire Field Effect Transistors
Access: Use of this item is restricted to the UNT Community.
An economically reliable technique for the synthesis of silicon nanowire was developed using silicon chloride as source material. The 30-40 micron long nanowires were found to have diameters ranging from 40 – 100 nm. An amorphous oxide shell covered the nanowires, post-growth. Raman spectroscopy confirmed the composition of the shell to be silicon-dioxide. Photoluminescence measurements of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell. Etching of the oxide shell was found to decrease the intensity of green emission. n-type doping of the silicon nanowires was achieved using antimony as the dopant. The maximum dopant concentration was achieved by post-growth diffusion. Intrinsic nanowire parameters were determined by implementation of the as-grown and antimony doped silicon nanowires in field effect transistor configuration. digital.library.unt.edu/ark:/67531/metadc103364/
Dual-band Microwave Components And Their Applications
In general, Dual-Band technology enables microwave components to work at two different frequencies. This thesis introduces novel dual-band microwave components and their applications. Chapter 2 presents a novel compact dual-band balun (converting unbalanced signals to balanced ones). The ratio between two working frequencies is analyzed. A novel compact microstrip crossover (letting two lines to cross each other with very high isolation) and its dual-band application is the subject of chapter 3. A dual-frequency cloak based on lumped LC-circuits is introduced in chapter 4. In chapter 5, a dual-band RF device to detect dielectric constant changes of liquids in polydimethylsiloxane (PDMS) microfluidic channels has been presented. Such a device is very sensitive, and it has significantly improved the stability. Finally, conclusion of this thesis and future works are given in chapter 6. digital.library.unt.edu/ark:/67531/metadc103391/
Exploration Of Energy And Area Efficient Techniques For Coarse-grained Reconfigurable Fabrics
Coarse-grained fabrics are comprised of multi-bit configurable logic blocks and configurable interconnect. This work is focused on area and energy optimization techniques for coarse-grained reconfigurable fabric architectures. In this work, a variety of design techniques have been explored to improve the utilization of computational resources and increase energy savings. This includes splitting, folding, multi-level vertical interconnect. In addition to this, I have also studied fully connected homogeneous and heterogeneous architectures, and 3D architecture. I have also examined some of the hybrid strategies of computation unit’s arrangements. In order to perform energy and area analysis, I selected a set of signal and image processing benchmarks from MediaBench suite. I implemented various fabric architectures on 90nm ASIC process from Synopsys. Results show area improvement with energy savings as compared to baseline architecture. digital.library.unt.edu/ark:/67531/metadc103413/
FIRST PREV 1 2 NEXT LAST