You limited your search to:

  Partner: UNT Libraries
 Language: English
 Degree Discipline: Analytical Chemistry
Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

Date: 2016-5
Creator: Williams, Kristina
Description: The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
Contributing Partner: UNT Libraries
Fundamental Studies of Copper Corrosion in Interconnect Fabrication Process and Spectroscopic Investigation of Low-k Structures

Fundamental Studies of Copper Corrosion in Interconnect Fabrication Process and Spectroscopic Investigation of Low-k Structures

Date: December 2015
Creator: Goswami, Arindom
Description: In the first part of this dissertation, copper bimetallic corrosion and its inhibition in cleaning processes involved in interconnect fabrication is explored. In microelectronics fabrication, post chemical mechanical polishing (CMP) cleaning is required to remove organic contaminants and particles left on copper interconnects after the CMP process. Use of cleaning solutions, however, causes serious reliability issues due to corrosion and recession of the interconnects. In this study, different azole compounds are explored and pyrazole is found out to be a potentially superior Cu corrosion inhibitor, compared to the most widely used benzotriazole (BTA), for tetramethyl ammonium hydroxide (TMAH)-based post CMP cleaning solutions at pH 14. Micropattern corrosion screening results and electrochemical impedance spectroscopy (EIS) revealed that 1 mM Pyrazole in 8 wt% TMAH solution inhibits Cu corrosion more effectively than 10 mM benzotriazole (BTA) under same conditions. Moreover, water contact angle measurement results also showed that Pyrazole-treated Cu surfaces are relatively hydrophilic compared to those treated with BTA/TMAH. X-ray photoelectron spectroscopy (XPS) analysis supports Cu-Pyrazole complex formation on the Cu surface. Overall Cu corrosion rate in TMAH-based highly alkaline post CMP cleaning solution is shown to be considerably reduced to less than 1Å/min by addition of 1 mM Pyrazole. In ...
Contributing Partner: UNT Libraries
Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

Date: August 2015
Creator: Mitheo, Yannick K.
Description: In this experiment, more than one hundred volatile organic compounds were analyzed with the gas chromatograph. Six capillary columns ZB wax plus, ZB 35, TR1MS, TR5, TG5MS and TG1301MS with different polarities have been used for separation of compounds and illicit drugs. The Abraham solvation model has five solute descriptors. The solute descriptors are E, S, A, B, L (or V). Based on the six stationary phases, six equations were constructed as a training set for each of the six columns. The six equations served to calculate the solute descriptors for a set of illicit drugs. Drugs studied are nicotine (S= 0.870, A= 0.000, B= 1.073), oxycodone(S= 2.564. A= 0.286, B= 1.706), methamphetamine (S= 0.297, A= 1.570, B= 1.009), heroin (S=2.224, A= 0.000, B= 2.136) and ketamine (S= 1.005, A= 0.000, B= 1.126). The solute property of Abraham solvation model is represented as a logarithm of retention time, thus the logarithm of experimental and calculated retention times is compared.
Contributing Partner: UNT Libraries
A Study of Silver: an Alternative Maldi Matrix for Low Weight Compounds and Mass Spectrometry Imaging

A Study of Silver: an Alternative Maldi Matrix for Low Weight Compounds and Mass Spectrometry Imaging

Date: May 2014
Creator: Walton, Barbara Lynn
Description: Soft-landing ion mobility has applicability in a variety of areas. The ability to produce material and collect a sufficient amount for further analysis and applications is the key goal of this technique. Soft-landing ion mobility has provided a way to deposit material in a controllable fashion, and can be tailored to specific applications. Changing the conditions at which soft-landing ion mobility occurs effects the characteristics of the resulting particles (size, distribution/coverage on the surface). Longer deposition times generated more material on the surface; however, higher pressures increased material loss due to diffusion. Larger particles were landed when using higher pressures, and increased laser energy at ablation. The utilization of this technique for the deposition of silver clusters has provided a solvent free matrix application technique for MALDI-MS. The low kinetic energy of incident ions along with the solvent free nature of soft-landing ion mobility lead to a technique capable of imaging sensitive samples and low mass analysis. The lack of significant interference as seen by traditional organic matrices is avoided with the use of metallic particles, providing a major enhancement in the ability to analyze low mass compounds by MALDI.
Contributing Partner: UNT Libraries
Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Date: May 2012
Creator: Wang, Zhouxing
Description: The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict ...
Contributing Partner: UNT Libraries
FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface

FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface

Date: December 2007
Creator: Pillai, Karthikeyan
Description: Plasma polymerization techniques were used to synthesize and deposit hydrogel on silicon (Si) substrate. Hydrogel is a network of polymer chains that are water-insoluble and has a high degree of flexibility. The various fields of applications of hydrogel include drug release, biosensors and tissue engineering etc. Hydrogel synthesized from different monomers possess a common property of moisture absorption. In this work two monomers were used namely 1-amino-2-propanol (1A2P) and 2(ethylamino)ethanol (2EAE) to produce polymer films deposited on Si ATR crystal. Their moisture uptake property was tested using FTIR-ATR technique. This was evident by the decrease in -OH band in increasing N2 purging time of the films. Secondly, two monomer compounds namely vinyl acetic acid and glycidyl methacrylate which have both amine and carboxylic groups are used as solid surface for the immobilization of bovine serum albumin (BSA). Pulsed plasma polymerization was used to polymerize these monomers with different duty cycles. Initial works in this field were all about protein surface adsorption. But more recently, the emphasis is on covalent bonding of protein on to the surface. This immobilization of protein on solid surface has a lot of applications in the field of biochemical studies. The polymerization of vinyl acetic acid ...
Contributing Partner: UNT Libraries
Electrodeposition of Copper on Ruthenium Oxides and Bimetallic Corrosion of Copper/Ruthenium in Polyphenolic Antioxidants

Electrodeposition of Copper on Ruthenium Oxides and Bimetallic Corrosion of Copper/Ruthenium in Polyphenolic Antioxidants

Date: August 2007
Creator: Venkataraman, Shyam S.
Description: Copper (Cu) electrodeposition on ruthenium (Ru) oxides was studied due to important implications in semiconductor industry. Ruthenium, proposed as the copper diffusion barrier/liner material, has higher oxygen affinity to form different oxides. Three different oxides (the native oxide, reversible oxide, and irreversible oxide) were studied. Native oxide can be formed on exposing Ru in atmosphere. The reversible and irreversible oxides can be formed by applying electrochemical potential. Investigation of Cu under potential deposition on these oxides indicates the similarity between native and reversible oxides by its nature of inhibiting Cu deposition. Irreversible oxide formed on Ru surface is rather conductive and interfacial binding between Cu and Ru is greatly enhanced. After deposition, bimetallic corrosion of Cu/Ru in different polyphenols was studied. Polyphenols are widely used as antioxidants in post chemical mechanical planarization (CMP). For this purpose, different trihydroxyl substituted benzenes were used as antioxidants. Ru, with its noble nature enhances bimetallic corrosion of Cu. Gallic acid (3,4,5 - trihydroxybenzoic acid) was chosen as model compound. A mechanism has been proposed and validity of the mechanism was checked with other antioxidants. Results show that understanding the chemical structure of antioxidants is necessary during its course of reaction with Cu.
Contributing Partner: UNT Libraries
Study of Copper Electrodeposition on Ruthenium Oxide Surfaces and Bimetallic Corrosion of Copper/Ruthenium in Gallic Acid Solution

Study of Copper Electrodeposition on Ruthenium Oxide Surfaces and Bimetallic Corrosion of Copper/Ruthenium in Gallic Acid Solution

Date: August 2007
Creator: Yu, Kyle K.
Description: Ruthenium, proposed as a new candidate of diffusion barrier, has three different kinds of oxides, which are native oxide, electrochemical reversible oxide and electrochemical irreversible oxide. Native oxide was formed by naturally exposed to air. Electrochemical reversible oxide was formed at lower anodic potential region, and irreversible oxides were formed at higher anodic potential region. In this study, we were focusing on the effect of copper electrodeposition on each type of oxides. From decreased charge of anodic stripping peaks and underpotential deposition (UPD) waves in cyclic voltammetry (CV), efficiency of Cu deposition dropped off indicating that interfacial binding strength between Cu and Ru oxides was weakened when the Ru surface was covered with irreversible oxide and native oxide. Also, Cu UPD was hindered by both O2 and H2 plasma modified Ru surfaces because the binding strength between Cu and Ru was weakened by O2 and H2 plasma treatment. Cu/Ru and Cu/Ta bimetallic corrosion was studied for understanding the corrosion behavior between diffusion barrier (Ta and Ru) and Cu interconnects under the post chemical mechanical planarization (CMP) process in semiconductor fabrication. Gallic acid is used in post CMP slurry solution and is known well as antioxidant which is supposed to oxidize ...
Contributing Partner: UNT Libraries
Study of Substituted Benzenesulfonate-Containing Layered Double Hydroxides and Investigation of the Hexamethylenetetramine Route of LDH Synthesis

Study of Substituted Benzenesulfonate-Containing Layered Double Hydroxides and Investigation of the Hexamethylenetetramine Route of LDH Synthesis

Date: May 2007
Creator: Ambadapadi, Sriram
Description: Benzenesulfonates, para-substituted with amine, chloride and methyl groups were successfully incorporated into layered double hydroxides of two different compositions, 2:1 Mg-Al LDH and 2:1 Zn-Al LDH. These parent materials were also doped with small amounts of nickel and the differences in the two systems were studied. The hexamethylenetetramine route of layered double hydroxide synthesis was investigated to verify if the mechanism is indeed homogeneous. This included attempting preparation of 2:1 Mg-Al LDH, 2:1 Zn-Al LDH and 2:1 Zn-Cr LDH with two different concentrations of hexamethylenetetramine. The analytical data of the products suggest that the homogeneous precipitation may not be the true mechanism of reaction involved in LDH synthesis by this method.
Contributing Partner: UNT Libraries
Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Yuan, Qiuhua
Description: The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending bands at ~3575 and ~630 cm-1, respectively. The SEM shows an adhesive, crack free morphology for the double-layer coating surface of the samples sintered in a vacuum furnace. 2. Silver/polymer/clay nanocomposites. Silver nanoparticles were prepared in layered clay mineral (montmorillonite)/polymer (PVP: poly (vinyl pyrrolidone)) suspension by an electrochemical approach. The silver particles formed in the bulk suspension were stabilized by the PVP and partially exfoliated clay platelets, which acted as protective colloids to prevent coagulation of silver nanoparticles together. The synthesized silver nanoparticles/montmorillonite/PVP composite was characterized and identified by XRD, SEM, and TEM (transmission electron microscopy) measurements. 3. Ce-doped lead ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST