## You limited your search to:

**Partner:**UNT Libraries

**Degree Discipline:**Mathematics

**Degree Level:**Doctoral

### Consistency in Lattices

**Date:**May 1986

**Creator:**Race, David M. (David Michael)

**Description:**Let L be a lattice. For x ∈ L, we say x is a consistent join-irreducible if x V y is a join-irreducible of the lattice [y,1] for all y in L. We say L is consistent if every join-irreducible of L is consistent. In this dissertation, we study the notion of consistent elements in semimodular lattices.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331688/

### Automorphism Groups of Strong Bruhat Orders of Coxeter Groups

**Date:**August 1986

**Creator:**Sutherland, David C. (David Craig)

**Description:**In this dissertation, we describe the automorphism groups for the strong Bruhat orders A_n-1, B_n, and D_n. In particular, the automorphism group of A_n-1 for n ≥ 3 is isomorphic to the dihedral group of order eight, D_4; the automorphism group of B_n for n ≥ 3 is isomorphic to C_2 x C_2 where C_2 is the cyclic group of order two; the automorphism group of D_n for n > 5 and n even is isomorphic to C_2 x C_2 x C_2; and the automorphism group of D_n for n ≥ 5 and n odd is isomorphic to the dihedral group D_4.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330906/

### Containment Relations Between Classes of Regular Ideals in a Ring with Few Zero Divisors

**Date:**May 1987

**Creator:**Race, Denise T. (Denise Tatsch)

**Description:**This dissertation focuses on the significance of containment relations between the above mentioned classes of ideals. The main problem considered in Chapter II is determining conditions which lead a ring to be a P-ring, D-ring, or AM-ring when every regular ideal is a P-ideal, D-ideal, or AM-ideal, respectively. We also consider containment relations between classes of regular ideals which guarantee that the ring is a quasi-valuation ring. We continue this study into the third chapter; in particular, we look at the conditions in a quasi-valuation ring which lead to a = Jr, sr - f, and a = v. Furthermore we give necessary and sufficient conditions that a ring be a discrete rank one quasi-valuation ring. For example, if R is Noetherian, then ft = J if and only if R is a discrete rank one quasi-valuation ring.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331394/

### Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings

**Date:**May 1987

**Creator:**Chapman, Scott T. (Scott Thomas)

**Description:**Let K be any field and Q be the rationals. Define K^1[X] = {f(X) e K[X]| the coefficient of X in f(X) is zero} and Q^1β[X] = {f(X) e Q[X]| the coefficent of β1(X) in the binomial expansion of f(X) is zero}, where {β1(X)}^∞ i=0 are the well-known binomial polynomials. In this work, I establish the following results: K^1[X] and Q^1β[X] are one-dimensional, Noetherian, non-Prüfer domains with the two-generator property on ideals. Using the unique factorization structure of the overrings K[X] and Q[X], the nonprincipal ideal structures of both rings are characterized, and from this characterization, necessary and sufficient conditions are found for a nonprincipal ideal to be invertible. The nonprincipal invertible ideals are then characterized in terms of the coefficients of the generators, and an explicit formula for the inverse of any proper invertible ideal is found. Finally, the class groups of both rings are shown to be torsion free abelian groups. Let n be any nonnegative integer. Results similar to the above are found in the generalizations of these two rings, K^n[X] and q^nβ[X], where the coefficients on the first n nonconstant basis elements are zero. For the domains K^1[X] and Q^1β[X], the property of strong two-generation is ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331673/

### Radially Symmetric Solutions to a Superlinear Dirichlet Problem in a Ball

**Date:**August 1987

**Creator:**Kurepa, Alexandra

**Description:**In this paper we consider a radially symmetric nonlinear Dirichlet problem in a ball, where the nonlinearity is "superlinear" and "superlinear with jumping."

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330725/

### Dually Semimodular Consistent Lattices

**Date:**May 1988

**Creator:**Gragg, Karen E. (Karen Elizabeth)

**Description:**A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implies that a covers a ∧ b. L is consistent if for every join-irreducible j and every element x in L, the element x ∨ j is a join-irreducible in the upper interval [x,l]. In this paper, finite dually semimodular consistent lattices are investigated. Examples of these lattices are the lattices of subnormal subgroups of a finite group. In 1954, R. P. Dilworth proved that in a finite modular lattice, the number of elements covering exactly k elements is equal to the number of elements covered by exactly k elements. Here, it is established that if a finite dually semimodular consistent lattice has the same number of join-irreducibles as meet-irreducibles, then it is modular. Hence, a converse of Dilworth's theorem, in the case when k equals 1, is obtained for finite dually semimodular consistent lattices. Several combinatorial results are shown for finite consistent lattices similar to those already established for finite geometric lattices. The reach of an element x in a lattice L is the difference between the rank of x*, the join of x and all ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330641/

### Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension

**Date:**May 1988

**Creator:**Brucks, Karen M. (Karen Marie), 1957-

**Description:**This dissertation is a study of the dynamics of one-dimensional unimodal maps and is mainly concerned with those maps which are trapezoidal. The trapezoidal function, f_e, is defined for eΣ(0,1/2) by f_e(x)=x/e for xΣ[0,e], f_e(x)=1 for xΣ(e,1-e), and f_e(x)=(1-x)/e for xΣ[1-e,1]. We study the symbolic dynamics of the kneading sequences and relate them to the analytic dynamics of these maps. Chapter one is an overview of the present theory of Metropolis, Stein, and Stein (MSS). In Chapter two a formula is given that counts the number of MSS sequences of length n. Next, the number of distinct primitive colorings of n beads with two colors, as counted by Gilbert and Riordan, is shown to equal the number of MSS sequences of length n. An algorithm is given that produces a bisection between these two quantities for each n. Lastly, the number of negative orbits of size n for the function f(z)=z^2-2, as counted by P.J. Myrberg, is shown to equal the number of MSS sequences of length n. For an MSS sequence P, let H_ϖ(P) be the unique common extension of the harmonics of P. In Chapter three it is proved that there is exactly one J(P)Σ[0,1] such that the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc332102/

### Existence of a Solution for a Wave Equation and an Elliptic Dirichlet Problem

**Date:**May 1988

**Creator:**Sumalee Unsurangsie

**Description:**In this paper we consider an existence of a solution for a nonlinear nonmonotone wave equation in [0,π]xR and an existence of a positive solution for a non-positone Dirichlet problem in a bounded subset of R^n.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331780/

### Minimization of a Nonlinear Elasticity Functional Using Steepest Descent

**Date:**August 1988

**Creator:**McCabe, Terence W. (Terence William)

**Description:**The method of steepest descent is used to minimize typical functionals from elasticity.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331296/

### Operators on Continuous Function Spaces and Weak Precompactness

**Date:**August 1988

**Creator:**Abbott, Catherine Ann

**Description:**If T:C(H,X)-->Y is a bounded linear operator then there exists a unique weakly regular finitely additive set function m:-->L(X,Y**) so that T(f) = ∫Hfdm. In this paper, bounded linear operators on C(H,X) are studied in terms the measure given by this representation theorem. The first chapter provides a brief history of representation theorems of these classes of operators. In the second chapter the represenation theorem used in the remainder of the paper is presented. If T is a weakly compact operator on C(H,X) with representing measure m, then m(A) is a weakly compact operator for every Borel set A. Furthermore, m is strongly bounded. Analogous statements may be made for many interesting classes of operators. In chapter III, two classes of operators, weakly precompact and QSP, are studied. Examples are provided to show that if T is weakly precompact (QSP) then m(A) need not be weakly precompact (QSP), for every Borel set A. In addition, it will be shown that weakly precompact and GSP operators need not have strongly bounded representing measures. Sufficient conditions are provided which guarantee that a weakly precompact (QSP) operator has weakly precompact (QSP) values. A sufficient condition for a weakly precomact operator to be strongly ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331171/

### Applications of Graph Theory and Topology to Combinatorial Designs

**Date:**December 1988

**Creator:**Somporn Sutinuntopas

**Description:**This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331968/

### Bounded, Finitely Additive, but Not Absolutely Continuous Set Functions

**Date:**May 1989

**Creator:**Gurney, David R. (David Robert)

**Description:**In leading up to the proof, methods for constructing fields and finitely additive set functions are introduced with an application involving the Tagaki function given as an example. Also, non-absolutely continuous set functions are constructed using Banach limits and maximal filters.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc332375/

### Hausdorff, Packing and Capacity Dimensions

**Date:**August 1989

**Creator:**Spear, Donald W.

**Description:**In this thesis, Hausdorff, packing and capacity dimensions are studied by evaluating sets in the Euclidean space R^. Also the lower entropy dimension is calculated for some Cantor sets. By incorporating technics of Munroe and of Saint Raymond and Tricot, outer measures are created. A Vitali covering theorem for packings is proved. Methods (by Taylor and Tricot, Kahane and Salem, and Schweiger) for determining the Hausdorff and capacity dimensions of sets using probability measures are discussed and extended. The packing pre-measure and measure are shown to be scaled after an affine transformation. A Cantor set constructed by L.D. Pitt is shown to be dimensionless using methods developed in this thesis. A Cantor set is constructed for which all four dimensions are different. Graph directed constructions (compositions of similitudes follow a path in a directed graph) used by Mauldin and Willjams are presented. Mauldin and Williams calculate the Hausdorff dimension, or, of the object of a graph directed construction and show that if the graph is strongly connected, then the a—Hausdorff measure is positive and finite. Similar results will be shown for the packing dimension and the packing measure. When the graph is strongly connected, there is a constant so that ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330990/

### The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors

**Date:**August 1989

**Creator:**Hipp, James W. (James William), 1956-

**Description:**We show that the maximum size of a geometry of rank n excluding the (q + 2)-point line, the 3-wheel W_3, and the 3-whirl W^3 as minor is (n - 1)q + 1, and geometries of maximum size are parallel connections of (q + 1)-point lines. We show that the maximum size of a geometry of rank n excluding the 5-point line, the 4-wheel W_4, and the 4-whirl W^4 as minors is 6n - 5, for n ≥ 3. Examples of geometries having rank n and size 6n - 5 include parallel connections of the geometries V_19 and PG(2,3).

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330849/

### Weakly Dense Subsets of Homogeneous Complete Boolean Algebras

**Date:**August 1990

**Creator:**Bozeman, Alan Kyle

**Description:**The primary result from this dissertation is following inequality: d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}) in ZFC, where B is a homogeneous complete Boolean algebra, d(B) is the density, wd(B) is the weak density, and c(B) is the cellularity of B. Chapter II of this dissertation is a general overview of homogeneous complete Boolean algebras. Assuming the existence of a weakly inaccessible cardinal, we give an example of a homogeneous complete Boolean algebra which does not attain its cellularity. In chapter III, we prove that for any integer n > 1, wd_2(B) = wd_n(B). Also in this chapter, we show that if X⊂B is κ—weakly dense for 1 < κ < sat(B), then sup{wd_κ(B):κ < sat(B)} = d(B). In chapter IV, we address the following question: If X is weakly dense in a homogeneous complete Boolean algebra B, does there necessarily exist b € B\{0} such that {x∗b: x ∈ X} is dense in B|b = {c € B: c ≤ b}? We show that the answer is no for collapsing algebras. In chapter V, we give new proofs to some well known results concerning supporting antichains. A direct consequence of these results is the relation c(B) < wd(B), ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330803/

### Uniqueness of Positive Solutions for Elliptic Dirichlet Problems

**Date:**December 1990

**Creator:**Ali, Ismail, 1961-

**Description:**In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB, where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order. We also present a regularity result on linear elliptic equation where a coefficient has critical growth.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330654/

### Aspects of Universality in Function Iteration

**Date:**December 1991

**Creator:**Taylor, John (John Allen)

**Description:**This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278799/

### Characterizations of Some Combinatorial Geometries

**Date:**August 1992

**Creator:**Yoon, Young-jin

**Description:**We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277894/

### π-regular Rings

**Date:**May 1993

**Creator:**Badawi, Ayman R.

**Description:**The dissertation focuses on the structure of π-regular (regular) rings.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279388/

### Universal Branched Coverings

**Date:**May 1993

**Creator:**Tejada, Débora

**Description:**In this paper, the study of k-fold branched coverings for which the branch set is a stratified set is considered. First of all, the existence of universal k-fold branched coverings over CW-complexes with stratified branch set is proved using Brown's Representability Theorem. Next, an explicit construction of universal k-fold branched coverings over manifolds is given. Finally, some homotopy and homology groups are computed for some specific examples of Universal k-fold branched coverings.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279340/

### Applications of Rapidly Mixing Markov Chains to Problems in Graph Theory

**Date:**August 1993

**Creator:**Simmons, Dayton C. (Dayton Cooper)

**Description:**In this dissertation the results of Jerrum and Sinclair on the conductance of Markov chains are used to prove that almost all generalized Steinhaus graphs are rapidly mixing and an algorithm for the uniform generation of 2 - (4k + 1,4,1) cyclic Mendelsohn designs is developed.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277740/

### Property (H*) and Differentiability in Banach Spaces

**Date:**August 1993

**Creator:**Obeid, Ossama A.

**Description:**A continuous convex function on an open interval of the real line is differentiable everywhere except on a countable subset of its domain. There has been interest in the problem of characterizing those Banach spaces where the continuous functions exhibit similar differentiability properties. In this paper we show that if a Banach space E has property (H*) and B_E• is weak* sequentially compact, then E is an Asplund space. In the case where the space is weakly compactly generated, it is shown that property (H*) is equivalent for the space to admit an equivalent Frechet differentiable norm. Moreover, we define the SH* spaces, show that every SH* space is an Asplund space, and show that every weakly sequentially complete SH* space is reflexive. Also, we study the relation between property (H*) and the asymptotic norming property (ANP). By a slight modification of the ANP we define the ANP*, and show that if the dual of a Banach spaces has the ANP*-I then the space admits an equivalent Fréchet differentiability norm, and that the ANP*-II is equivalent to the space having property (H*) and the closed unit ball of the dual is weak* sequentially compact. Also, we show that in the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277852/

### The Continuous Wavelet Transform and the Wave Front Set

**Date:**December 1993

**Creator:**Navarro, Jaime

**Description:**In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277762/

### Multifractal Measures

**Date:**May 1994

**Creator:**Olsen, Lars

**Description:**The purpose of this dissertation is to introduce a natural and unifying multifractal formalism which contains the above mentioned multifractal parameters, and gives interesting results for a large class of natural measures. In Part 2 we introduce the proposed multifractal formalism and study it properties. We also show that this multifractal formalism gives natural and interesting results when applied to (nonrandom) graph directed self-similar measures in Rd and "cookie-cutter" measures in R. In Part 3 we use the multifractal formalism introduced in Part 2 to give a detailed discussion of the multifractal structure of random (and hence, as a special case, non-random) graph directed self-similar measures in R^d.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279084/