You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Mathematics
 Degree Level: Doctoral
Aspects of Universality in Function Iteration

Aspects of Universality in Function Iteration

Date: December 1991
Creator: Taylor, John (John Allen)
Description: This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.
Contributing Partner: UNT Libraries
The Continuous Wavelet Transform and the Wave Front Set

The Continuous Wavelet Transform and the Wave Front Set

Date: December 1993
Creator: Navarro, Jaime
Description: In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet.
Contributing Partner: UNT Libraries
Multifractal Measures

Multifractal Measures

Date: May 1994
Creator: Olsen, Lars
Description: The purpose of this dissertation is to introduce a natural and unifying multifractal formalism which contains the above mentioned multifractal parameters, and gives interesting results for a large class of natural measures. In Part 2 we introduce the proposed multifractal formalism and study it properties. We also show that this multifractal formalism gives natural and interesting results when applied to (nonrandom) graph directed self-similar measures in Rd and "cookie-cutter" measures in R. In Part 3 we use the multifractal formalism introduced in Part 2 to give a detailed discussion of the multifractal structure of random (and hence, as a special case, non-random) graph directed self-similar measures in R^d.
Contributing Partner: UNT Libraries
Topics in Fractal Geometry

Topics in Fractal Geometry

Date: August 1994
Creator: Wang, JingLing
Description: In this dissertation, we study fractal sets and their properties, especially the open set condition, Hausdorff dimensions and Hausdorff measures for certain fractal constructions.
Contributing Partner: UNT Libraries
Cycles and Cliques in Steinhaus Graphs

Cycles and Cliques in Steinhaus Graphs

Date: December 1994
Creator: Lim, Daekeun
Description: In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian.
Contributing Partner: UNT Libraries
A Topological Uniqueness Result for the Special Linear Groups

A Topological Uniqueness Result for the Special Linear Groups

Date: August 1997
Creator: Opalecky, Robert Vincent
Description: The goal of this paper is to establish the dependency of the topology of a simple Lie group, specifically any of the special linear groups, on its underlying group structure. The intimate relationship between a Lie group's topology and its algebraic structure dictates some necessary topological properties, such as second countability. However, the extent to which a Lie group's topology is an "algebraic phenomenon" is, to date, still not known.
Contributing Partner: UNT Libraries
Minimality of the Special Linear Groups

Minimality of the Special Linear Groups

Date: December 1997
Creator: Hayes, Diana Margaret
Description: Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear group SLn(F) with the usual topology induced by F is a minimal topological group. This is accomplished by first proving the minimality of the upper triangular group in SLn(F). The proof for the upper triangular group uses an induction argument on a chain of upper triangular subgroups and relies on general results for locally compact topological groups, quotient groups, and subgroups. Minimality of SLn(F) is concluded by appealing to the associated Lie group decomposition as the product of a compact group and an upper triangular group. We also prove the universal minimality of homeomorphism groups of one dimensional manifolds, and we give a new simple proof of the universal minimality of S∞.
Contributing Partner: UNT Libraries
Existence of Many Sign Changing Non Radial Solutions for Semilinear Elliptic Problems on Annular Domains

Existence of Many Sign Changing Non Radial Solutions for Semilinear Elliptic Problems on Annular Domains

Date: August 1998
Creator: Finan, Marcel Basil
Description: The aim of this work is the study of the existence and multiplicity of sign changing nonradial solutions to elliptic boundary value problems on annular domains.
Contributing Partner: UNT Libraries
Multifractal Analysis of Parabolic Rational Maps

Multifractal Analysis of Parabolic Rational Maps

Date: August 1998
Creator: Byrne, Jesse William
Description: The investigation of the multifractal spectrum of the equilibrium measure for a parabolic rational map with a Lipschitz continuous potential, φ, which satisfies sup φ < P(φ) x∈J(T) is conducted. More specifically, the multifractal spectrum or spectrum of singularities, f(α) is studied.
Contributing Partner: UNT Libraries
Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Date: December 1998
Creator: Richardson, Peter A. (Peter Adolph), 1955-
Description: In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST