You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Biochemistry
A Quantitative Radioimmunoassay for Phosphoglucose Isomerase and Its Utilization in Detecting Cross-Reactive Material in Variant Forms of Phosphoglucose Isomerase and in Human Tissues
A method for purification and radiolabelling phosphoglucose isomerase was devised in order to develop a sensitive quantitative radioimmunoassay for the detection of the enzyme irrespective of its catalytic activity. For four genetic variants of PGI no difference in the molecular specific activity was observed. In one variant (PGI-Denton), liver and heart tissue extracts, and in mature erythrocytes (as compared to normal erythrocytes), a decreased molecular specific activity was observed which initially may imply that these samples contain cross-reactive material which is not catalytically active. digital.library.unt.edu/ark:/67531/metadc663113/
NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase from Swine Kidney: Characterization and Kinetic Mechanism
Cytoplasmic 15-hydroxyprostaglandin dehydrogenase from swine kidney was purified to specific activity of 1.2 U per mg protein, by chromatographic techniques. Native molecular weight of enzyme was estimated at 45,000. Enzyme was inhibited by sulfhydryls, diuretics, and various fatty acids. Substrate studies indicated NAD+ specificity and ability to catabolize prostaglandins, except prostaglandin B and thromboxane B. Initial velocity studies gave intersecting plots conforming to a sequential mechanism. 15-keto-prostaglandin exhibited linear noncompetitive production inhibition with respect to either prostaglandin or NAD+; NAD yielded linear competitive production inhibition with respect to NADH. Results, and those of dead-end inhibition and alternated substrate studies, are consistent with an ordered Bi-Bi mechanism: NAD+ is added first, then prostaglandin; then 15-keto-rostaglandin is released, then NADH. digital.library.unt.edu/ark:/67531/metadc503944/
Changes in Body Composition, Plasma Alanine, and Urinary Nitrogen in Rats Subjected to Negative Caloric Balance Through Diet, Diet/Exercise, and Exercise
Male Fischer rats (n=43) were used in a diet-diet/ exercise design to investigate the apparent protein sparing effects of exercise. The animals were divided into five groups: INITIAL (baseline), SEDENTARY (control), DIET, DIET/EXERCISE, and EXERCISE. Carcasses were analyzed for body composition, the blood for plasma alanine concentration and the urine for urea nitrogen concentration. The results showed no significant differences between groups in urinary urea nitrogen, plasma alanine, body weight, or carcass weights. The EXERCISE group had a significant increase in percent protein and a significant decrease in percent fat and grams of fat when compared to all other groups (p <.05). digital.library.unt.edu/ark:/67531/metadc503925/
Purification and Studies of Methylglyoxal Reductase from Sheep Liver
The objectives of these investigations were (1) the purification of MG reductase from sheep liver and (2) studies of some of its characteristics. MG reductase was purified 40 fold and showed a single band on SDS-PAGE. Molecular weight estimations with SDS-PAGE showed a molecular weight of 44,000; although gel filtration with Sephadex G-150 gave a molecular weight of 87,000 indicating that the enzyme might be a dimer. The Km for MG is 1.42 mM and for NADH it is 0.04 mM. The pH optimum for the purified enzyme is pH 7.0. Isoelectric focusing experiments showed a pI of 9.3. In vivo experiments involving rats treated with 3,3',5-triiodothyronine (T_3) and 6-n-propyl-2-thiouracil (PTU) indicated that MG reductase was depressed by T_3 and elevated by PTU. digital.library.unt.edu/ark:/67531/metadc504292/
Identification and Characterization of a Calcium/Phospholipid-Dependent Protein Kinase in P1798 Lymphosarcomas
Calcium/phospholipid-dependent protein kinase (PKC) was partially purified from P1798 lymphosarcoma. Phospholipid-dependence was specific for phosphatidylserine. PKC phosphorylated Histone 1, with an apparent K_m of 14.1 μM. Chlorpromazine, a lipid-binding drug, inhibited PKC activity by 100%. Further studies were undertaken to establish analytical conditions which could be applied to the study of PKC in intact cells. The conditions included (1) determining optimum cell concentration for measuring PKC activity, (2) recovering PKC into the soluble fraction of cell extracts, (3) evaluating calcium and phospholipid requirements of PKC in this fraction, and (4) inhibiting PKC in this fraction. Final studies involved treatment of intact cells with potential activators. Both phytohaemagglutinin and a phorbol ester increased PKC activation. digital.library.unt.edu/ark:/67531/metadc504466/
pH Dependence of the Kinetic Parameters for the Oxalacetate Decarboxylation and Pyruvate Reduction Reactions Catalyzed by Malic Enzyme
Ascaris suum NAD-malic enzyme catalyzes the decarboxylation of oxalacetate and reduction of pyruvate. Thus, the present classification (E.C. 1.1.1.39) for this enzyme should be changed to E.C. 1.1.1.38. In the absence of nucleotide, both the chicken liver NADP-malic enzyme and Ascaris suum NAD-malic enzymes catalyze the decarboxylation of oxalacetate. A study of the pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction was carried out for the NAD(P)-malic enzyme with Mg^2+ and Mn^2+ in the presence and absence of nucleotide. In all cases, an enzyme residue is required in its protonated form for reaction while for oxalacetate decarboxylation the β-carboxyl of oxalacetate is required unprotonated. Of a number of inhibitory binding analogs of malate tested, oxalate is the tightest binding inhibitor for Ascaris suum enzyme. digital.library.unt.edu/ark:/67531/metadc504272/
The Nucleotide Sequences of a Mammalian Tyrosine Transfer RNA and a Cluster of Human Transfer RNA Genes
Tyrosine tRNA was isolated from bovine liver and its nucleotide sequence was determined using in vitro 32p_ labeling techniques. Several important structural features of the tRNA are: the presence of gal-Q in the first position of the anticodon, acp3U at position 20, and a pair of adjacent N,N-dimethylguanosines (residues 26 and 27). A human DNA fragment harbored in a lambda phage clone was isolated, and restriction enzyme analysis revealed the presence of three tRNA genes in a 6.0-kb BamHI subfragment. Portions of the 6.0-kb DNA fragment containing the tRNA genes were sequenced by the method of Maxam and Gilbert and analyzed for transcriptional activity in vitro using homologous cytoplasmic extracts. A threonine tRNAUGU gene exhibited high transcriptional activity dependent on its 5'- flanking sequence. The enhanced transcription is not completely inhibited by alpha-amanitin. The value of studying tRNA structure in concert with the cognate tRNA. genes is discussed. digital.library.unt.edu/ark:/67531/metadc500631/
Analysis of Human Transfer RNA Gene Heteroclusters
Two phage lambda clones encompassing human tRNA genes have been isolated from a human gene library harbored in bacteriophage lambda Charon-UA. One of the clones (designated as hLeuU) containing a 20-kb human DNA fragment was isolated and found to contain a cluster of four tRNA genes. An 8.2-kb Hindlll fragment encompassing the four tRNA genes was isolated from the 20-kb fragment and subcloned into pBR322 for restriction mapping and DNA sequence analysis. The four tRNA genes are arranged as two tandem pairs with the first pair containing a proline tRNAAGQ gene and a leucine tRNAAAQ gene and the second pair containing another proline tRNAAGG gene and a threonine tRNAuQU gene. The two pairs are separated about 3 kb from each other, and the leucine tRNAAAG gene is of opposite polarity from the other three tRNA genes. The tRNA transcription units were sequenced by a unidirectional deletion dideoxyribonucleotide chain-termination method in the M13mpl8 and 19 vectors. The coding regions of the four tRNA genes contain characteristic internal split promoter sequences and do not encode intervening sequences nor the CCA trinucleotide found in mature tRNAs. The proline t R N A A G G gene is separated from the leucine t R N A A A Q gene by a 725-bp intergenic region and the second proline t R N A A G Q is 315 bp downstream of the threonine t R N A U G U gene. The coding sequences of the two proline tRNA genes are identical. The 3'-flanking regions near the 3*-ends of these four tRNA genes have typical RNA polymerase III termination sites of at least four c o n s e c u t i v e T nt. There is no homology between the 5'-flanking regions of these genes. All four tRNA genes are potentially functional, since they are transcribed by RNA polymerase III in an in vitro HeLa cell extract. Another phage lambda clone (designated as XhLeu8) was also found to contain four tRNA genes. One of the tRNA genes was characterized by DNA sequencing. The tRNA gene has an anticodon for leucine, but has three base substitutions from the leucine tRNA^A G and the leucine tRNAAAQ gene of AhLPT, occurring in the D-stem, D-loop and T-loop regions. The substitution in the T-loop is a C to T transition at an otherwise invariant position of the consensus sequence, 5'-GTTC-3'» within the B-block of the internal split promotor. Thus, this gene may more properly be classified as a leucine tRNA pseudogene. digital.library.unt.edu/ark:/67531/metadc332435/
Purification, Characterization and Receptor Binding of Human Colony-Stimulating Factor-1
Human colony-stimulating factor-1 (CSF-1) was purified from the serum-free conditioned medium of a human pancreatic carcinoma cell line. The four-step procedure included chromatography on DEAE Sepharose, Con A Sepharose and HPLC on phenyl column and reverse-phase C-3 column. The purity of human CSF-1 was demonstrated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS—PAGE) as a single diffuse band with a molecular weight (Mr) of 42,000-50,000 and was further confirmed by a single amino-terminal amino acid residue of glutamate. Under reducing conditions, purified CSF-1 appeared on SDS-PAGE as a single protein band with a Mr of 21,000-25,000 and concurrently lost its biological activity, indicating that human CSF-1 consists of two similar subunits and that the intact quaternary structure is essential for biological activity. When treated with neuraminidase and endo-8~D~N—acetylglucosaminidase D, the Mr of CSF-1 was reduced to 36,000-40,000 and to a Mr of 18,000-20,000 in the presence of mercaptoethanol. digital.library.unt.edu/ark:/67531/metadc331991/
Studies on Hog Plasma Lecithin:cholesterol Acyltransferase: Isolation and Characterization of the Enzyme
Lecithin:cholesterol acyltransferase (LCAT) was isolated from hog plasma and basic physicochemical properties and functionally important regions were investigated. Approximately one milligram of the enzyme was purified to apparent homogeneity with approximately a 20,000-fold increase in specific activity. In the plasma, hog LCAT was found to associate with high-density lipoproteins (HDL) probably through hydrophobic interactions with apolipoprotein A-I. HDL was the preferred lipoprotein substrate of the enzyme as its macromolecular substrate. The enzyme was found to contain 4 free sulfhydryl groups; at least one of these appeared to be essential for catalytic activity. The enzyme had a tendency to aggregate at high concentrations. More than half of the tryptophan and none of the tyrosine residues of the enzyme were shown to be exposed to the aqueous environment based on fluorescence and absorbance studies, respectively. digital.library.unt.edu/ark:/67531/metadc331699/
Physical, Chemical and Catalytic Properties of the Isozymes of Bovine Glucose Phosphate Isomerase
Glucose phosphate isomerase (GPI) occurs in different bovine tissues as multiple, catalytically active isozymes which can be resolved by polyacrylamide gel electrophoresis and isoelectric focusing. GPI from bovine heart was purified to homogeneity and each of the isozymes was resolved. Four of the five isozymes were characterized with regard to their physical, chemical and catalytic properties in order to establish their possible physiological significance and to ascertain their molecular basis. The isozymes exhibited identical native (118 Kd) and subunit (59 Kd) molecular weights but had different apparent pi values of 7.2, 7.0, 6.8 and 6.6. Structural analyses showed that the amino terminus was blocked and the carboxyl terminal sequence was -Glu-Ala-Ser-Gly for all four isozymes. The most basic isozyme was more stable than the more acidic isozymes (lower pi values) at pH extremes, at high ionic strength, in the presence of denaturants or upon exposure to proteases. Kinetic constants, such as turnover number, Km and Ki values, were identical for all isozymes. Identical amino acid composition and peptide mapping by chemical cleavage at methionine and cysteine residues of the isozymes suggest a postsynthetic modification rather then a genetic origin for the in vivo isozymes. When the most basic isozyme was incubated in vitro under mild alkaline conditions, there was a spontaneous generation of the more acidic isozymes with electrophoretic properties identical to those found in vivo. The simultaneous release in ammonia along with the spontaneous shift to more acidic isozymes and changes in the specific cleavage of the Asn-Gly bonds by hydroxylamine of the acidic isozyme indicates deamidation as the probable molecular basis. In summary the isozymes appear to be the result of spontaneous, postsynthetic modifications involving the addition of an equal number of negative charges and are consistent with the deamidation process. digital.library.unt.edu/ark:/67531/metadc332289/
Studies of Enzyme Mechanism Using Isotopic Probes
The isotope partitioning studies of the Ascaris suum NAD-malic enzyme reaction were examined with five transitory complexes including E:NAD, E:NAD:Mg, E:malate, E:Mg:malate, and E:NAD:malate. Three productive complexes, E:NAD, E:NAD:Mg, and E:Mg:malate, were obtained, suggesting a steady-state random mechanism. Data for trapping with E:14C-NAD indicate a rapid equilibrium addition of Mg2+ prior to the addition of malate. Trapping with 14C-malate could only be obtained from the E:Mg2+:14C-malate complex, while no trapping from E:14C-malate was obtained under feasible experimental conditions. Most likely, E:malate is non-productive, as has been suggested from the kinetic analysis. The experiment with E:NAD:malate could not be carried out due to the turnover of trace amounts of malate dehydrogenase in the pulse solution. The equations for the isotope partitioning studies varying two substrates in the chase solution in an ordered terreactant reaction were derived, allowing a determination of the relative rates of substrate dissociation to the catalytic reaction for each of the productive transitory complexes. NAD and malate are released from the central complex at an identical rate, equal to the catalytic rate. digital.library.unt.edu/ark:/67531/metadc331996/
Structural Analyses of a Human Valine Transfer RNA Gene and of a Transfer RNA Pseudogene Cluster
Two different cloned human DNA segments encompassing transfer RNA gene and pseudogene clusters have been isolated from a human gene library harbored in bacteriophage lambda Charon 4-A. One clone (designated as λhVal7) encompassing a 20.5-kilobase (Kb) human DNA insert was found to contain a valine transfer RNA_AAC gene and several Alu-like elements by Southern blot hybridization analysis and DNA sequencing with the dideoxyribonucleotide chain-termination method in the bacteriophage M13mp19 vector. Another lambda clone (designated as λhLeu8) encompassing a 14.3-Kb segment of human DNA was found to contain a methionine elongator transfer RNA_CAT pseudogene and other as yet unidentified transfer RNA pseudogenes. digital.library.unt.edu/ark:/67531/metadc500850/
Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase
Isotope partitioning experiments were carried out with the adenosine 3',5'-monophosphate-dependent protein kinase catalytic subunit (cAPK) from bovine hearts to obtain information on the order of addition of reactants and the relative rates of reactant release from enzyme compared to the catalytic step(s). A value of 100% trapping for both ErMgATP-[γ-32P] and E:3H-Serpeptide at low Mgf indicates that MgATP and Serpeptide dissociate slowly from the enzyme compared to the catalytic step(s). The K_Serpeptide for MgATP trapping is 17 μM, while the K_MgATP for Serpeptide trapping is 0.58 mM. The latter data indicate that the off-rate for MgATP from the E:MgATP complex is 14 s^-1 while that for Serpeptide from the E: Serpeptide complex is 64 s^-1. At high Mg^, 100% trapping is obtained for the E:MgATP-[γ-32P] complex but only 40% is obtained for the E:Serpeptide complex. Thus, the off-rate for Serpeptide from the E:MgATP:Serpeptide complex becomes significant at high Mg_f. Data suggest a random mechanism in which MgATP is sticky. The V for the cAPK reaction increases 1.5-1.7 fold in the presence of the R_II in the presence of saturating cAMP at a stoichiometry of R:C of 1:1. No change is obtained with the type-I complex under these conditions. At higher ratio of R:C (up to 100) no further change is observed with the type-II complex but inhibition by the type-I R_2(cAMP)_4 complex competitive vs. Serpeptide is observed. The activiation observed in the presence type-II R_2(cAMP)_4 effects neither the K_m for Serpeptide nor the K_m for MgATP. Both the activating affect of the type-II complex and the inhibitory effect of the type-I complex are dependent on the Mg_f with more type-II activation obtained the higher the Mg_f and more type-I complex required for inhibition the higher the Mg_f. The activation and inhibition are discussed in terms of the mechanism of the protein kinase. digital.library.unt.edu/ark:/67531/metadc330934/
Alternate Substrates and Isotope Effects as a Probe of the Malic Enzyme Reaction
Dissociation constants for alternate dirmcleotide substrates and competitive inhibitors suggest that the dinucleotide binding site of the Ascaris suum NAD-malic enzyme is hydrophobic in the vicinity of the nicotinamide ring. Changes in the divalent metal ion activator from Mg^2+ to Mn^2+ or Cd^2+ results in a decrease in the dinucleotide affinity and an increase in the affinity for malate. Primary deuterium and 13-C isotope effects obtained with the different metal ions suggest either a change in the transition state structure for the hydride transfer or decarboxylation steps or both. Deuterium isotope effects are finite whether reactants are maintained at saturating or limiting concentrations with all the metal ions and dinucleotide substrates used. With Cd^2+ as the divalent metal ion, inactivation of the enzyme occurs whether enzyme alone is present or is turning over. Upon inactivation only Cd^2+ ions are bound to the enzyme which becomes denatured. Modification of the enzyme to give an SCN-enzyme decreases the ability of Cd^2+ to cause inactivation. The modified enzyme generally exhibits increases in K_NAD and K_i_metai and decreases in V_max as the metal size increases from Mg^2+ to Mn^2+ or Cd^2+, indicative of crowding in the site. In all cases, affinity for malate greatly decreases, suggesting that malate does not bind optimally to the modified enzyme. For the native enzyme, primary deuterium isotope effects increase with a concomitant decrease in the 13-C effects when NAD is replaced by an alternate dinucleotide substrate different in redox potential. This suggests that when the alternate dinucleotides are used, a switch in the rate limitation of the chemical steps occurs with hydride transfer more rate limiting than decarboxylation. Deuteration of malate decreases the 13-C effect with NAD for the native enzyme, but an increase in 13-C effect is obtained with alternate dinucleotides. These suggest the presence of a secondary 13-C effect in the hydride transfer step. This phenomenon is also applicable to the modified enzyme with NAD as the substrate. digital.library.unt.edu/ark:/67531/metadc330840/
In Vitro Modulation of Rat Liver Glyoxalase II Activity
Glyoxylase II (Glo II, E.C. 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoylglutathione (SLG) to D-Lactate and glutathione. This is the rate limiting step in the conversion of methylglyoxal to D-Lactate. The purpose of the present study was to determine whether or not a relationship exists between some naturally occuring metabolites and in vivo modulation of Glo II. We have observed a non-competitive inhibition (~ 45%) of Glo II in crude preparation of rat liver by GTP (0.3 mM). A factor (apparently protein),devoid of Glo II,when reconstituted with the purified Glo II, enhanced Glo II activity. This coordinate activation and inhibition of Glo II suggest a mechanism whereby SLG levels can be modulated in vivo. digital.library.unt.edu/ark:/67531/metadc500992/
Kinetic and Chemical Mechanism of Pyrophosphate-Dependent Phosphofructokinase
Data obtained from isotope exchange at equilibrium, exchange of inorganic phosphate against forward reaction flux, and positional isotope exchange of 18O from the (βγ-bridge position of pyrophosphate to a (β-nonbridge position all indicate that the pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii has a rapid equilibrium random kinetic mechanism. All exchange reactions are strongly inhibited at high concentrations of the fructose 6-phosphate/Pi and MgPPi/Pi substrate-product pairs and weakly inhibited at high concentrations of the MgPPi/fructose 1,6-bisphosphate pair suggesting three dead-end complexes, E:F6P:Pi, E:MgPPi:Pi, and E:FBP:MgPPi. Neither back-exchange by [32p] nor positional isotope exchange of 18O-bridge-labeled pyrophosphate was observed under any conditions, suggesting that either the chemical interconversion step or a step prior to it limits the overall rate of the reaction. Reduction of the pyridoxal 5'-phosphate-inactivated enzyme with NaB[3H]4 indicates that about 7 lysines are modified in free enzyme and fructose 1,6-bisphosphate protects 2 of these from modification. The pH dependence of the enzyme-reactant dissociation constants suggests that the phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, inorganic phosphate, and Mg-pyrophosphate must be completely ionized and that lysines are present in the vicinity of the 1- and 6-phosphates of the sugar phosphate and bisphosphates probably directly coordinated to these phosphates. The pH dependence of kinetic parameters suggests that the enzyme catalyzes its reaction via general acid-base catalysis with the use of a proton shuttle. The base is required unprotonated in both reaction directions. In the direction of fructose 6-phosphate phosphorylation the base accepts a proton from the hydroxyl at C-l of F6P and then donates it to protonate the leaving phosphate. The maximum velocity of the reaction is pH independent in both reaction directions while V/K profiles exhibit pKs for binding groups (including enzyme and reactant functional groups) as well as pKs for enzyme catalytic groups. These data suggest that reactants bind only when correctly protonated and only to the correctly protonated form of the enzyme. digital.library.unt.edu/ark:/67531/metadc332128/
Studies of the Mechanism of the Catalytic Subunit of cAMP Dependent Protein Kinase
The kinetic mechanism of the cAMP-dependent protein kinase has been determined to be random in the direction of MgADP phosphorylation by using initial velocity studies in the absence and presence of the product, phospho-Serpeptide (Leu-Arg-Arg-Ala-Ser[P]-Leu-Gly) , and dead-end inhibitors. In contrast to the kinetic parameters obtained in the direction of Serpeptide phosphorylation, the only kinetic parameters affected by Mg^2+ are the dissociation constants for E:phospho-Serpeptide and E:MgADP, which are decreased by about 4-fold. The dead-end analog MgAMPCP binds with an affinity equal to that of MgADP in contrast to MgAMPPCP, which binds weaker than MgATP. The ratio of the maximum velocities in the forward and reverse reactions is about 200, and the Haldane relationship gives a K-eq of (7.2 ± 2) x 10^2. The latter can be compared to the K-eq obtained by direct measurement of reactant concentrations (2.2 ± 0.4) x 10^3 and 31-P NMR (1 ± 0.5) x 10^3. Data for the pH dependence of kinetic parameters and inhibitor dissociation constants for the cAMP dependent protein kinase are consistent with a mechanism in which reactants selectively bind to an enzyme with the catalytic base unprotonated and an enzyme group required protonated for Ser-peptide binding. Preferentially MgATP binds fully ionized and requires an enzyme residue (probably lysine) to be protonated. The maximum velocity and V/K-MgATP are pH independent. The V/K for Serpeptide is bell-shaped with estimated pK values of 6.2 and 8.5. The dependence of 1/K-i for Leu-Arg-Arg-Ala-Ala-Leu-Gly is also bell-shaped, giving pK values identical with those obtained for V/K-Serpeptide, while the K-i for MgAMPPCP increases from a constant value of 650 μM above pH 8 to a constant value of 4 mM below pH 5.5. The K-i for uncomplexed Mg^2+ obtained from the Mg^2+ dependence of V and V/K-MgATP is apparently pH independent. digital.library.unt.edu/ark:/67531/metadc332161/
Studies of the Mechanism of Plasma Cholesterol Esterification in Aged Rats
The study was performed to determine factors influencing the esteriflcation of plasma cholesterol in young and aged rats. The distribution of LCAT activity was determined following gel nitration chromatography and ultracentrifugation of whole plasma respectively. When rat plasma was fractionated on a Bio-Gel A-5 Mcolumn, LCAT activity was found to be associated with the HDL fraction. A similar result was observed upon 24 hr density gradient ultracentrifugation of the plasma. However, following prolonged 40 hr preparative ultracentrifugation, the majority of the LCAT activity was displaced into the lipoprotein-free infranatant fraction (d> 1.225 g/ml). The dissociation of LCAT from the HDL fraction occured to a smaller extent in aged rat plasma than in young rat plasma. Plasma incubation (37°C) experiments followed by the isolation of lipoproteins and the subsequent analysis of their cholesterol content revealed that in vitro net esteriflcation of free cholesterol (FC) by LCAT as well as the fractional ufilization of HDL-FC as substrate were lower in the plasma of the aged animal as compared to that of the young animal despite the fact that the total pool of FC was higher in the former. The net transfer of FC from lower density lipoproteins (d<1.07 g/ml) to HDL provided the FC (in addition to HDL-FC) for esteriflcation in the plasma of both young and aged rats, and this process was not substantially affected by aging. Substrate specificity studies indicated that HDL from young rats was a better substrate for LCAT than the HDL from aged rats. The HDL isolated from the plasma of aged rats was enriched with apo E and had a considerably higher molecular weight than the HDL from young rat plasma. The ratio of phosphatidyl choline/sphingomyelin was lower in the HDL of aged rats. These data suggest that the decreased plasma cholesterol esteriflcation in aged rats is due to changes in the composition and size of the lipoprotein substrate (HDL). digital.library.unt.edu/ark:/67531/metadc331051/
Analysis of a Human Transfer RNA Gene Cluster and Characterization of the Transcription Unit and Two Processed Pseudogenes of Chimpanzee Triosephosphate Isomerase
An 18.5-kb human DNA segment was selected from a human XCharon-4A library by hybridization to mammalian valine tRNAiAc and found to encompass a cluster of three tRNA genes. Two valine tRNA genes with anticodons of AAC and CAC, encoding the major and minor cytoplasmic valine tRNA isoacceptors, respectively, and a lysine tRNAcuu gene were identified by Southern blot hybridization and DNA sequence analysis of a 7.1-kb region of the human DNA insert. At least nine Alu family members were found interspersed throughout the human DNA fragment. The tRNA genes are accurately transcribed by RNA polymerase III in a HeLa cell extract, since the RNase Ti fingerprints of the mature-sized tRNA transcription products are consistent with the DNA sequences of the structural genes. Three members of the chimpanzee triosephosphate isomerase (TPI) gene family, the functional transcription unit and two processed pseudogenes, were characterized by genomic blotting and DNA sequence analysis. The bona fide TPI gene spans 3.5 kb with seven exons and six introns, and is the first complete hominoid TPI gene sequenced. The gene exhibits a very high identity with the human and rhesus TPI genes. In particular, the polypeptides of 248 amino acids encoded by the chimpanzee and human TPI genes are identical, although the two coding regions differ in the third codon wobble positions for five amino acids. An Alu member occurs upstream from one of the processed pseudogenes, whereas an isolated endogenous retroviral long terminal repeat (HERV-K) occurs within the structural region of the other processed pseudogene. The ages of the processed pseudogenes were estimated to be 2.6 and 10.4 million years, implying that one was inserted into the genome before the divergence of the chimpanzee and human lineages, and the other inserted into the chimpanzee genome after the divergence. digital.library.unt.edu/ark:/67531/metadc331579/
Identification of Endogenous Substrates for ADP-Ribosylation in Rat Liver
Bacterial toxins have been shown to modify animal cell proteins in vivo with ADPR. Animal cells also contain endogenous enzymes that can modify proteins. Indirect evidence for the existence in vivo of rat liver proteins modified by ADPR on arginine residues has been reported previously. Presented here is direct evidence for the existence of ADP-ribosylarginine in rat liver proteins. Proteins were subjected to exhaustive protease digestion and ADP-ribosyl amino acids were isolated by boronate chromatography. digital.library.unt.edu/ark:/67531/metadc277847/
Application of Synthetic Peptides as Substrates for Reversible Phosphorylation
Two highly homologous synthetic peptides MLC(3-13) (K-R-A-K-A-K-T-TK-K-R-G) and MLC(5-13) (A-K-A-K-T-T-K-K-R-G) corresponding to the amino terminal amino acid sequence of smooth muscle myosin light chain were utilized as substrates for protein kinase C purified from murine lymphosarcoma tumors to determine the role of the primary amino acid sequence of protein kinase C substrates in defining the lipid (phosphatidyl serine and diacylglycerol) requirements for the activation of the enzyme. Removal of the basic residues lysine and arginine from the amino terminus of MLC(3-13) did not have a significant effect on the Ka value of diacylglycerol. The binding of effector to calcium-protein kinase C appears to be random since binding of one effector did not block the binding of the other. digital.library.unt.edu/ark:/67531/metadc277577/
Dependence of the Kinetic Mechanism of Adenosine 3',5'-Monophosphate Dependent Protein Kinase Catalytic Subunit in the Direction of Magnesium Adenosine 5'-Diphosphate Phosphorylation on pH and the Concentration of Free Magnesium Ions
To define the overall kinetic and chemical mechanism of adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit, the mechanism in the direction of MgADP phosphorylation was determined, using studies of initial velocity in the absence and presence of dead-end inhibitors. The kinetic mechanism was determined as a function of uncomplexed Mg^2+ (Mg_f) at pH 7.2 and as a function of pH at low (0.5 mM) Mg_f. At pH 7.2 data are consistent with a random kinetic mechanism in the direction of MgADP phosphorylation with both pathways allowed: the pathway in which MgADP binds to enzyme prior to phosphorylated peptide (PSP) and that in which PSP binds before MgADP. One or the other pathway predominates, depending on Mg_f concentration. At 0.5 mM Mg_f, the mechanism is steady-state ordered with the pathway where PSP binds first preferred; at 10 mM Mg_f, the mechanism is equilibrium ordered, and the pathway in which MgADP binds first preferred. This change in mechanism to equilibrium ordered is due to an increase in affinity of enzyme for MgADP and a decrease in affinity for PSP. There is also a pH-dependent change in mechanism at 0.5 mM Mg_f. At pH 6 the mechanism is equilibrium ordered with the pathway where PSP binds first preferred. At pH 7.6 the mechanism is ordered with MgADP binding first. The log V/E_t vs. pH profile is pH-independent, suggesting only the correctly protonated form of each substrate binds to enzyme. The log V/K_MgADP vs. PH profile gives a pK of 7, likely that of a general acid, which must be protonated for activity. The pK_iPSP vs. pH profile gives a pK of 6.5, likely reflecting the peptide phosphoryl group, which must be unprotonated for activity. digital.library.unt.edu/ark:/67531/metadc277956/
Fumarate Activation and Kinetic Solvent Isotope Effects as Probes of the NAD-Malic Enzyme Reaction
The kinetic mechanism of activation of the NAD-malic enzyme by fumarate and the transition state structure for the oxidation malate for the NAD-malic enzyme reaction have been studied. Fumarate exerts its activating effect by decreasing the off-rate for malate from the E:Mg:malate and E:Mg:NAD:malate complexes. The activation by fumarate results in a decrease in K_imalate and an increase in V/K_malate by about 2-fold, while the maximum velocity remains constant. A discrimination exists between active and activator sites for the binding of dicarboxylic acids. Activation by fumarate is proposed to have physiologic importance in the parasite. The hydride transfer transition state for the NAD-malic enzyme reaction is concerted with respect to solvent isotope sensitive and hydride transfer steps. Two protons are involved in the solvent isotope sensitive step, one with a normal fractionation factor, another with an inverse fractionation factor. A structure for the transition state for hydride transfer in the NAD-malic enzyme reaction is proposed. digital.library.unt.edu/ark:/67531/metadc278864/
Desensitized Phosphofructokinase from Ascaris suum: A Study in Noncooperative Allostery
The studies described in this dissertation examine the effects of F-2,6-P2 and AMP or phosphorylation on the kinetic mechanism of d-PFK. The effect of varied pH on the activation by F-2,6-P2 is also described. digital.library.unt.edu/ark:/67531/metadc279174/
Kinetic and Chemical Mechanism of 6-phosphogluconate Dehydrogenase from Candida Utilis
A complete initial velocity study of the 6-phosphogluconate dehydrogenase from Candida utilis in both reaction directions suggests a rapid equilibrium random kinetic mechanism with dead-end E:NADP:(ribulose 5-phosphate) and E:NADPH:(6- phosphogluconate) complexes. Initial velocity studies obtained as a function of pH and using NAD as the dinucleotide substrate for the reaction suggest that the 2'-phosphate is critical for productive binding of the dinucleotide substrate. Primary deuterium isotope effects using 3-<i-6-phosphogluconate were obtained for the 6-phosphogluconate dehydrogenase reaction using NADP and various alternative inucleotide substrates. digital.library.unt.edu/ark:/67531/metadc278323/
A Study of the Intrinsic Fluorescence of O-Acetyl-L-Serine Sulfhydrylase-A from Salmonella typhimurium
O-Acetyl-L-serine sulfhydrylase-A (OASS-A) forms acetate and L-cysteine from O-acetyl-L-serine (OAS) and sulfide. One molecule of the cofactor pyridoxal 5'- phosphate (PLP) is bound in each holoenzyme protomer. digital.library.unt.edu/ark:/67531/metadc278975/
O-Acetylserine Sulhydralase-A from Salmonella typhimurium LT-2: Thermodynamic Properties and SPectral Identification of Intermediates
O-Acetylserine Sulfhydrylase (OASS) is a pyridoxal phosphate enzyme that catalyzes the reaction of O-acetyl-Lserine with sulfide to give L-cysteine. OASS is present as two isoforms, designated -A and -B. The kinetic mechanism of OASS-A is well known and there is also much known concerning the acid-base chemistry of the enzyme. However, little is known concerning the location of the rate determining steps, the sequencing of chemical steps that occur at the active site, or the nature of the rate determining transition states. The studies performed to help elucidate these aspects of the OASS-A mechanism included determination of the thermodynamics of both half reactions, along with studies utilizing substrate analogs of OAS halting the reaction at specific points along the reaction pathway allowing the identification of reaction intermediates. The free energy change of the first half reaction was shown to be -5.7 Kcal/mole while the second half reaction was shown to be, for all intents and purposes, irreversible. Intermediates along the reaction pathway that have been previously identified include the internal Schiff base and the a-aminoacrylate. The external Schiff base was identified using the analogs cysteine, alanine, and glycine while the geminal diamine was identified using the analog serine. Formation of the external aldimine was shown to be pH dependent with a pK of 8.1 ± 0.3 most likely representing a general base that accepts a proton from the a-amine of cysteine to facilitate a nucleophilic attack on C4r of the PLP imine. Formation of the geminal diamine was also shown to be pH dependent with two pK values having an average value of 8.1. One of the groups most likely represents the general base which accepts a proton from the a-amine of cysteine while the second group likely interacts with the amino acid side chain to orientate the amino acid into the correct configuration. digital.library.unt.edu/ark:/67531/metadc278042/
Kinetic and Chemical Mechanism of O-Acetylserine Sulfhydrylase-B from Salmonella Typhimurium
Initial velocity studies of O-acetylserine sulfhydrylase-B (OASS-B) from Salmonella typhimurium using both natural and alternative substrates suggest a Bi Bi ping pong kinetic mechanism with double substrate competitive inhibition. The ping pong mechanism is corroborated by a qualitative and quantitative analysis of product and dead-end inhibition. Product inhibition by acetate is S-parabolic noncompetitive, indication of a combination of acetate with E followed by OAS. These data suggest some randomness to the OASS-B kinetic mechanism. The pH dependence of kinetic parameters was determined in order to obtain information on the acid-base chemical mechanism for the OASS-B reaction. A mechanism is proposed in which an enzyme general base accepts a proton from α-amine of O-acetylserine, while a second enzyme general base acts by polarizing the acetyl carbonyl assisting in the β-elimination of the acetyl group of O-acetylserine. The ε-amine of the active site lysine acts as a general base to abstract the α-proton in the β-elimination of acetate. At the end of the first half reaction the ε-amine of the active site lysine that formed the internal Schiff base and the general base are protonated. The resulting α-aminoacrylate intermediate undergoes a Michael addition with HS‾ and the active site lysine donates its proton to the α-carbon to give cysteine and regenerate enzyme to start the second half reaction. In addition, substrate specificity, stereochemistry of the internal Schiff base at C4', and sequence around active site lysine of O-acetylserine sulfhydrylase-A have been determined. The [4'-^3H]pyridoxamine generated by reduction of the internal Schiff base with sodium [^3H]borohydride retained most of its tritium after incubation with apoaspartate aminotransferase. These results agree with the hypothesis put forth by Dunathan (Dunathan, 1971; Dunathan and Voet, 1974) that a single surface (Re face) of the active site PLP is accessible to solvent. The sequence around the active site lysine is AsnProSerPheSerValLysCysArg. digital.library.unt.edu/ark:/67531/metadc279064/
Autophosphorylation and Autoactivation of an S6/H4 Kinase Isolated From Human Placenta
A number of protein kinases have been shown to undergo autophosphorylation, but few have demonstrated a coordinate increase or decrease in enzymatic activity as a result. Described here is a novel S6 kinase isolated from human placenta which autoactivates through autophosphorylation in vitro. This S6/H4 kinase, purified in an inactive state, was shown to be a protein of Mr of 60,000 as estimated by SDS-PAGE and could catalyze the phosphorylation of the synthetic peptide S6-21, the histone H4, and myelin basic protein. Mild digestion of the inactive S6/H4 kinase with trypsin was necessary, but not sufficient, to activate the kinase fully digital.library.unt.edu/ark:/67531/metadc279364/
Characterization of a Human 28S Ribosomal RNA Retropseudogene and Other Repetitive DNA Sequence Elements Isolated from a Human X Chromosome-Specific Library
Three genomic clones encompassing human DNA segments (designated LhX-3, LhX-4, and LhX5) were isolated from an X chromosome-specific library and subjected to analysis by physical mapping and DNA sequencing. It was found that these three clones are very rich in repetitive DNA sequence elements and retropseudogenes. digital.library.unt.edu/ark:/67531/metadc278083/
N-Acylethanolamines and Plant Phospholipase D
Recently, three distinct isoforms of phospholipase D (PLD) were identified in Arabidopsis thaliana. PLD α represents the well-known form found in plants, while PLD β and γ have been only recently discovered (Pappan et al., 1997b; Qin et al., 1997). These isoforms differ in substrate selectivity and cofactors required for activity. Here, I report that PLD β and γ isoforms were active toward N-acylphosphatidylethanolamine (NAPE), but PLD α was not. The ability of PLD β and γ to hydrolyze NAPE marks a key difference from PLD α. N-acylethanolamines (NAE), the hydrolytic products of NAPE by PLD β and γ, inhibited PLD α from castor bean and cabbage. Inhibition of PLD α by NAE was dose-dependent and inversely proportional to acyl chain length and degree of unsaturation. Enzyme kinetic analysis suggested non-competitive inhibition of PLD α by NAE 14:0. In addition, a 1.2-kb tobacco (Nicotiana tabacum L.) cDNA fragment was isolated that possessed a 74% amino acid identity to Arabidopsis PLD β indicating that this isoform is expressed in tobacco cells. Collectively, these results provide evidence for NAE producing PLD activities and suggest a possible regulatory role for NAE with respect to PLD α. digital.library.unt.edu/ark:/67531/metadc279270/
Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase: Identification, Purification and Biochemical Characterization of a Unique Acyltransferase
N-Acylphosphatidylethanoiamine (NAPE) is synthesized in the microsomes of cotton seedlings by a mechanism that is possibly unique to plants, the ATP-, Ca2+-, and CoA-independent acylation ofphosphatidylethanolamine (PE) with unesterified free fatty acids (FFAs), catalyzed by NAPE synthase. A photoreactive free fatty acid analogue, 12-[(4- azidosalicyl)amino]dodecanoic acid (ASD), and its 125I-labeled derivative acted as substrates for the NAPE synthase enzyme. digital.library.unt.edu/ark:/67531/metadc278862/
Regulation of an S6/H4 Kinase in Crude Lymphosarcoma P1798 Preparations
Purified S6/H4 kinase (Mr 60,000) requires autophosphorylation for activation. A rabbit anti-S6/H4 kinase peptide (SVIDPVPAPVGDSHVDGAAK) antibody recognized both the S6/H4 kinase holoenzyme and catalytic domain. Immunoreactivity with p60 kinase protein, and S6/H4 kinase activity were precisely correlated in fractions obtained from ion exchange chromatography of P1798 lymphosarcoma extracts. An enzyme which catalyzed the MgATP-dependent phosphorylation and activation of S6/H4 kinase coeluted with immunoreactivity from Mono 5, but not Mono Q chromatography. Since S6/H4 kinase is homologous with rac-activated PAK65, the observation that phosphorylation is also required for activation suggests a complex mechanism for in vivo activation of the S6/H4 kinase. digital.library.unt.edu/ark:/67531/metadc501281/
Nucleotide Inhibition of Glyoxalase II
The glyoxalase system mediates the conversion of methylglyoxal, a toxic ketoaldehyde, to D-lactic acid. The system is composed of two enzymes, glyoxalase I (Glo-I) and glyoxalase II (Glo-II), and exhibits an absolute requirement for a catalytic quantity of glutathione (GSH). Glo-I catalyzes the isomerization of a hemithioacetal, formed non-enzymatically from methylglyoxal and GSH, to the corresponding a -D-hydroxyacid thioester, s-D-lactoylglutathione (SLG). Glo-II catalyzes the irreversible breakdown of SLG to D-lactate and GSH. We have observed that ATP or GTP significantly inhibits the Glo-II activity of tissue homogenates from various sources. We have developed a rapid, one step chromatography procedure to purify Glo-II such that the purified enzyme remains "sensitive" to inhibition by ATP or GTP (Glo-II-s). Studies indicate that inhibition of Glo-II-s by nucleotides is restricted to ATP, GTP, ADP, and GDP, with ATP appearing most effective. Kinetics studies have shown that ATP acts as a partial non-competitive inhibitor of Glo-II-s activity, and further suggest that two kinetically distinguishable forms of the enzyme exist. The sensitivity of pure Glo-II-s to nucleotide inhibition is slowly lost on storage even at -80° C. This loss is accelerated at higher temperatures or in the presence of ATP. Kinetics studies on the resultant "insensitive" enzyme (Glo-II-i) show that a significant reduction of the affinity of the enzyme for the substrate, SLG, occurs and further suggest that only one form of the enzyme is kinetically distinguishable after "de-sensitization". Tryptophan fluorescence studies of the two enzyme preparations suggest that a subtle conformational change in the enzyme has occurred during de-sensitization. We have also observed that Glo-II-i is "resensitized" to nucleotide inhibition after incubation in the presence of a reagent that reduces disulfide bonds. The resensitized enzyme exhibits an increased KM value similar to that of the original Glo-II-s. Kinetics studies show that ATP or GTP again act as partial non-competitive inhibitors of the resensitized enzyme and suggest that only one form of the enzyme is present. The physiological significance of the two enzyme forms is discussed. digital.library.unt.edu/ark:/67531/metadc2183/
Conformational Studies of Myosin and Actin with Calibrated Resonance Energy Transfer
Access: Use of this item is restricted to the UNT Community.
Resonance energy transfer was employed to study the conformational changes of actomyosin during ATP hydrolysis. To calibrate the technique, the parameters for resonance energy transfer were defined. With conformational searching algorithms to predict probe orientation, the distances measured by resonance energy transfer are highly consistent with the atomic models, which verified the accuracy and feasibility of resonance energy transfer for structural studies of proteins and oligonucleotides. To study intramyosin distances, resonance energy transfer probes were attached to skeletal myosin's nucleotide site, subfragment-2, and regulatory light chain to examine nucleotide analog-induced structural transitions. The distances between the three positions were measured in the presence of different nucleotide analogs. No distance change was considered to be statistically significant. The measured distance between the regulatory light chain and nucleotide site was consistent with either the atomic model of skeletal myosin subfragment-1 or an average of the three models claimed for different ATP hydrolysis states, which suggested that the neck region was flexible in solution. To examine the participation of actin in the powerstroke process, resonance energy transfer between different sites on actin and myosin was measured in the presence of nucleotide analogs. The efficiencies of energy transfer between myosin catalytic domain and actin were consistent with the actoS1 docking model. However, the neck region was much closer to the actin filament than predicted by static atomic models. The efficiency of energy transfer between Cys 374 and the regulatory light chain was much greater in the presence of ADP-AlF4, ADP-BeFx, and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached crossbridges which appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin. The resonance energy transfer data exclude a number of versions of the swinging lever arm model, and indicate that actin participation is indispensable for conformational changes leading to force generation. The conformational selection during weak binding at the actomyosin interface may precock the myosin head for the ensuing powerstroke. digital.library.unt.edu/ark:/67531/metadc2438/
Noncovalent Crosslinking of SH1 and SH2 to Detect Dynamic Flexibility of the SH1 Helix
In this experiment, fluorescent N- (1-pyrenyl) iodoacetamide modified the two reactive thiols, SH1 (Cys 707) and SH2 (Cys 697) on myosin to detect SH1-SH2 a -helix melting. The excimer forming property of pyrene is well suited to monitor the dynamics of the SH1 and SH2 helix melting, since the excimer should only form during the melted state. Decreased anisotropy of the excimer relative to the monomeric pyrene fluorescence is consistent with the disordering of the melted SH1-SH2 region in the atomic model. Furthermore, nucleotide analogs induced changes in the anisotropy of the excimer, suggesting that the nucleotide site modulates the flexibility of SH1-SH2 region. digital.library.unt.edu/ark:/67531/metadc5844/
Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content
The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton resulted in elevated levels of palmitic acid in transgenic somatic embryos compared to control embryos. Expression of the anti-sense FatB cDNA in transgenic cotton plants produced some plants with a dwarf phenotype. These plants had significantly smaller mature leaves, all with smaller cells, suggesting that these plants may have less palmitic acid available for incorporation into extraplastidial membrane lipids during cell expansion. Thus manipulation of FatB expression in cotton directly influenced palmitic acid levels. Collectively, data presented in this dissertation support the hypothesis that there indeed is a palmitoyl-ACP thioesterase in cotton, encoded by the isolated FatB cDNA, which plays a major role in regulating palmitic acid content of extraplastidial complex glycerolipids. This work forms the basis for future studies of the influence of palmitic acid content on plant membrane function and provides a key target for the metabolic engineering of palmitic acid levels in storage oils of developing cottonseeds. digital.library.unt.edu/ark:/67531/metadc2891/
Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis
Recently, plastidial carbonic anhydrase (CA, EC 4.2.1.1) cDNA clones encoding functional CA enzymes were isolated from a nonphotosynthetic cotton tissue. The role of CA in photosynthetic tissues have been well characterized, however there is almost no information for the role of CA in nonphotosynthetic tissues. A survey of relative CA transcript abundance and enzyme activity in different cotton organs revealed that there was substantial CA expression in cotyledons of seedlings and embryos, both nonphotosynthetic tissues. To gain insight into the role(s) of CA, I examined CA expression in cotyledons of seedlings during post-germinative growth at different environmental conditions. CA expression in cotyledons of seedlings increased from 18 h to 72 h after germination in the dark. Seedlings exposed to light had about a 2-fold increase in CA activities when compared with seedlings kept in the dark, whereas relative CA transcript levels were essentially the same. Manipulation of external CO2 environments [zero, ambient (350 ppm), or high (1000 ppm)] modulated coordinately the relative transcript abundance of CA (and rbcS) in cotyledons, but did not affect enzyme activities. On the other hand, regardless of the external CO2 conditions seedlings exposed to light exhibited increase CA activity, concomitant with Rubisco activity and increased chlorophyll content. Our data revealed that steady-state levels of CA and rbcS transcripts are regulated at the transcriptional level in response to external CO2 conditions, while CA and Rubisco activities are modulated at the post-transcriptional level by light. Thus CA expression in cotyledons during post-germinative growth may be to “prime” cotyledons for the transition at the subcellular level for the transition from plastids to chloroplasts, where it provides CO2 for Rubisco during photosynthesis. Furthermore, CA expression increased during embryo maturation similar to oil accumulation. Specific sulfonamide inhibitors of CA activity significantly reduced the rate of [14C]-acetate incorporation into total lipids in cotton embryos and tobacco leaves and cell suspensions in vivo and in vitro. Similar results were obtained in chloroplasts isolated from leaves of transgenic CA antisense-suppressed tobacco plants (5% of wildtype activity). Collectively, these results support the notion that CA plays several physiological roles in nonphotosynthetic tissues. digital.library.unt.edu/ark:/67531/metadc2893/
Tobacco Phospholipase D β1: Molecular Cloning and Biochemical Characterization
Transgenic tobacco plants were developed containing a partial PLD clone in antisense orientation. The PLD isoform targeted by the insertion was identified. A PLD clone was isolated from a cDNA library using the partial PLD as a probe: Nt10B1 shares 92% identity with PLDβ1 from tomato but lacks the C2 domain. PCR analysis confirmed insertion of the antisense fragment into the plants: three introns distinguished the endogenous gene from the transgene. PLD activity was assayed in leaf homogenates in PLDβ/g conditions. When phosphatidylcholine was utilized as a substrate, no significant difference in transphosphatidylation activity was observed. However, there was a reduction in NAPE hydrolysis in extracts of two transgenic plants. In one of these, a reduction in elicitor- induced PAL expression was also observed. digital.library.unt.edu/ark:/67531/metadc3341/
Identification and quantification of lipid metabolites in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases.
The lipid composition of cotton (Gossypium hirsutum, L) fibers was determined. Fatty acid profiles revealed that linolenate and palmitate were the most abundant fatty acids present in fiber cells. Phosphatidylcholine was the predominant lipid class in fiber cells, while phosphatidylethanolamine, phosphatidylinositol and digalactosyldiacylglycerol were also prevalent. An unusually high amount of phosphatidic acid was observed in frozen cotton fibers. Phospholipase D activity assays revealed that this enzyme readily hydrolyzed radioactive phosphatidylcholine into phosphatidic acid. A profile of expressed sequence tags (ESTs) for genes involved in lipid metabolism in cotton fibers was also obtained. This EST profile along with our lipid metabolite data was used to predict lipid metabolic pathways in cotton fiber cells. digital.library.unt.edu/ark:/67531/metadc4474/
Studies on actomyosin crossbridge flexibility using a new single molecule assay.
Several key flexure sites exist in the muscle crossbridge including the actomyosin binding site which play important roles in the actomyosin crossbridge cycle. To distinguish between these sources of flexibility, a new single molecule assay was developed to observe the swiveling of rod about a single myosin. Myosins attached through a single crossbridge displayed mostly similar torsional characteristics compared to myosins attached through two crossbridges, which indicates that most of the torsional flexibility resides in the myosin subfragment-2, and thus the hinge between subfragment-2 and light meromyosin should contribute the most to this flexibility. The comparison of torsional characteristics in the absence and presence of ADP demonstrated a small but significant increase in twist rates for the double-headed myosins but no increase for single-headed myosins, which indicates that the ADP-induced increase in flexibility arises due to changes in the myosin head and verifies that most flexibility resides in myosin subfragment-2. digital.library.unt.edu/ark:/67531/metadc4514/
N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase
N-Acylethanolamines (NAEs) are endogenous lipid metabolites that occur in a variety of dry seeds, and their levels decline rapidly during the first few hours of imbibition (Chapman et al., 1999, Plant Physiol., 120:1157-1164). Biochemical studies supported the existence of an NAE amidohydrolase activity in seeds and seedlings, and efforts were directed toward identification of DNA sequences encoding this enzyme. Mammalian tissues metabolize NAEs via an amidase enzyme designated fatty acid amide hydrolase (FAAH). Based on the characteristic amidase signature sequence in mammalian FAAH, a candidate Arabidopsis cDNA was identified and isolated by reverse transcriptase-PCR. The Arabidopsis cDNA was expressed in E. coli and the recombinant protein indeed hydrolyzed a range of NAEs to free fatty acids and ethanolamine. Kinetic parameters for the recombinant protein were consistent with those properties of the rat FAAH, supporting identification of this Arabidopsis cDNA as a FAAH homologue. Two T-DNA insertional mutant lines with disruptions in the Arabidopsis NAE amidohydrolase gene (At5g64440) were identified. The homozygous mutant seedlings were more sensitive than the wild type to exogenously applied NAE 12:0. Transgenic seedlings overexpressing the NAE amidohydrolase enzyme showed noticeably greater tolerance to NAE 12:0 than wild type seedlings. These results together provide evidence in vitro and in vivo for the molecular identification of Arabidopsis NAE amidohydrolase. Moreover, the plants with altered NAE amidohydrolase expression may provide new tools for improved understanding of the role of NAEs in germination and seedling growth. digital.library.unt.edu/ark:/67531/metadc4575/
Use of luminescence energy transfer probes to detect genetic variants.
The purpose of this research was to study the hybridization of molecular beacons under different conditions and designs. Data collected suggest that the inconsistency found in the emission intensity of several of these probes may be caused by 3 important factors: length of the probe, nucleotide sequence and, the formation of an alternative complex structure such as a dimer. Of all three factors, dimer formation is the most troublesome, since it reduces the emission of the reporter molecules. A new probe design was used to reduce dimer formation. The emission signal of the improved probe was several folds stronger than those probes with the early design. In this research, dimer formation is detected, furthermore a new probe with a different design was tested. If dimer formation can be reduced molecular beacons can be integrated into more complex hybridization systems providing an important tool in research and diagnosis of genetic disorders. digital.library.unt.edu/ark:/67531/metadc4566/
Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.
Access: Use of this item is restricted to the UNT Community.
N-Acylethanolamines (NAEs) are enriched in seed-derived tissues and are believed to be formed from the membrane phospholipid, N-acylphosphatidylethanolamine (NAPE) via the action of phospholipase D (PLD). In an effort to identify a functional NAPE-PLD in cotton seeds and seedlings, we have screened a cotton seedling cDNA (cotyledon mRNA from 48 h dark grown seedlings) library with a 1.2 kb tobacco partial cDNA fragment encoding the middle third of a putative PLDβ/γ (genbank accession, AF195614) isoform. Six plaques were isolated from the Uni-ZAP lambda library, excised as pBluescript SK(-) phagemids and subjected to nucleotide sequence analysis. Alignment of derived sequences with Arabidopsis PLD family members indicated that the cDNAs represent six different PLD gene products -three putative PLD β isoforms and three putative PLD δ isoforms. The PLD β isoforms, designated Ghpldβ1a, GHpldβ1b and a truncated Ghpldβ1b isoform. Both the full-length PLD β proteins contained characteristic HKxxxxD catalytic domains, a PC-binding domain, a PIP2-binding domain and a C2 domain. In addition both cotton PLD β isoforms had a N-terminal "SPQY" rich domain which appeared to be unique to these PLDs. The three PLD δ isoforms, designated Ghpldδ1a, Ghpldδ1b and Ghpldδ1b-2 encode full-length PLDδ proteins, and like the above PLDs, contained the characteristic catalytic and regulatory domains. The expression of Ghpldδ1b showed hydrolytic and transphosphatidylation activity toward radiolabelled phosphatidylcholine (PC) but it appears Ghpldδ1b does not utilize NAPE as a substrate to produce NAEs nor does it seem to be suppressed by NAEs. digital.library.unt.edu/ark:/67531/metadc4732/
The structure and function of troponin T upon metal ion binding and the detection of nucleic acid sequence variations.
Access: Use of this item is restricted to the UNT Community.
Numerous troponin T (TnT) isoforms are generated by alternative RNA splicing primarily in its NH2-terminal hypervariable region, but the functions of these isoforms are not completely understood. In this dissertation work, calcium and terbium binding behavior of several forms of TnT were investigated by spectroscopic and radioactive techniques. Chicken breast muscle TnT binds calcium and terbium through its NH2-terminal Tx motif (HEEAH)n with high affinity (10-6 mM) and fast on-rate (106 - 107 M-1 s-1). Chicken leg muscle TnT and a human cardiac TnT NH2-terminal fragment, which both lack the Tx motif on their NH2-terminal regions, do not have affinities for calcium in the physiological range. Computational predictions on TnT N47 suggest that the TnT NH2-terminal region might fold into an elongated structure with at least one high affinity metal ion binding pocket comprised primarily of the Tx motif sequence and several lower affinity binding sites. In addition, calcium binding to TnT N47 might alter its conformation and flexibility. Luminescence resonance energy transfer measurements and other experimental observations are consistent with the computational predictions suggesting the computational simulated atomic model is reasonable. TnT mutations are responsible for 15% of familiar hypertrophic cardiomyopathy (FHC) cases with a phenotype of relatively mild hypertrophy, but a high incidence of sudden death. Detection of those genetic mutations would facilitate the clinical diagnosis and initiation of treatment at an early stage. This dissertation also investigated a novel hybridization proximity assay (HYPA) combining molecular beacon and luminescence resonance energy transfer (LRET) technologies. Experimental results suggest that a shared stem probe design produces a more consistent response upon hybridization, whereas the internally labeled probe was less consistent, but can yield the highest responses. Using the optimally designed molecular probes, the HYPA provides a detection of alterations in nucleic acid structure of as little as a single nucleotide. This novel HYPA is expected to expand its applications in the analysis and screening of genetic diseases. digital.library.unt.edu/ark:/67531/metadc5565/
Genetic Modification of Fatty Acid Profiles in Cotton
Access: Use of this item is restricted to the UNT Community.
The industrial uses of cottonseed oil are limited by its fatty acid composition. Genetic modification of cotton lipid profiles using seed-specific promoters could allow cotton growers to produce valuable new oils in the seed without adverse effects on fiber quality and yield, therefore making this crop more commercially profitable. Transgenic cotton callus harboring a diverged fatty acid desaturase gene (FADX) from Momordica charantia was characterized for production of alpha-eleostearic acid (conjugated double bonds: 18:3 D9 cis, 11 trans, 13 trans), not normally found in cotton. Gas chromatography (GC) in conjunction with mass spectrometry (MS) confirmed production of alpha-eleostearic acid in the transgenic cotton tissues. A second series of transformation experiments introduced the cotton fatty acid thioesterase B (FATB) cDNA, fused to the seed-specific oleosin promoter into cotton to promote the over-expression of FATB, to generate cotton with increased palmitate in the cottonseed. PCR amplification, as well as fatty acid analysis by gas chromatography, confirmed introduction of the FATB cDNA in transgenic tissues. Collectively, these results demonstrate the feasibility of manipulating the fatty acid composition in cotton via transgenic approaches and form the basis for continued efforts to create novel oils in cottonseed. digital.library.unt.edu/ark:/67531/metadc5575/
N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth
An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth. digital.library.unt.edu/ark:/67531/metadc5333/
Function of the ENOD8 gene in nodules of Medicago truncatula.
To elaborate on the function(s) of the ENOD8 gene in the nodules of M. truncatula, several different experimental approaches were used. A census of the ENOD8 genes was first completed indicating that only ENOD8.1 (nt10554-12564 of GenBank AF463407) is highly expressed in nodule tissues. A maltose binding protein-ENOD8 fusion protein was made with an E. coli recombinant system. A variety of biochemical assays were undertaken with the MBP-ENOD8 recombinant protein expressed in E. coli, which did not yield the esterase activity observed for ENOD8 protein nodule fractions purified from M. sativa, tested on general esterase substrates, α-naphthyl acetate, and p-nitrophenylacetate. Attempts were also made to express ENOD8 in a Pichia pastoris system; no ENOD8 protein could be detected from Pichia pastoris strains which were transformed with the ENOD8 expression cassette. Additionally, it was shown that the ENOD8 protein can be recombinantly synthesized by Nicotiana benthamiana in a soluble form, which could be tested for activity toward esterase substrates, bearing resemblance to nodule compounds, such as the Nod factor. Transcription localization studies using an ENOD8 promoter gusA fusion indicated that ENOD8 is expressed in the bacteroid-invaded zone of the nodule. The ENOD8 protein was also detected in that same zone by immunolocalization. Confocal immunomicroscopy with an affinity-purified anti-ENOD8 oligopeptide antibody showed that the ENOD8 protein localizes at the interface between the plant and the bacteroid-differentiated rhizobia, in the symbiosome membrane or symbiosome space. This suggests a possible link between ENOD8 protein and bacteroid differentiation, nitrogen fixation, or plant defense. These possible functions for ENOD8 could be tested with an ENOD8-RNAi transgenic line devoid of detectable ENOD8 proteins. digital.library.unt.edu/ark:/67531/metadc5471/
Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit
A novel luminescence resonance energy transfer (LRET) nanocircuit assay involving a donor and two acceptors in tandem was developed to study the dynamic interaction of skeletal muscle contraction proteins. The donor transmits energy relayed to the acceptors distinguishing myosin subfragment-1 (S1) lever arm orientations. The last acceptor allows the detection of S1's bound near or in between troponin complexes on the thin filament. Additionally, calcium related changes between troponin T and myosin were detected. Based on this data, the troponin complex situated every 7 actin monomers, hinders adjacently bound myosins to complete their power stroke; whereas myosins bound in between troponin complexes undergo complete power strokes. digital.library.unt.edu/ark:/67531/metadc3688/
FIRST PREV 1 2 NEXT LAST