You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Analytical Chemistry
Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Date: August 1994
Creator: Cheek, Roger W. (Roger Warren)
Description: Tungsten metal is used as an electrical conductor in many modern microelectronic devices. One of the primary motivations for its use is that it can be deposited in thin films by chemical vapor deposition (CVD). CVD is a process whereby a thin film is deposited on a solid substrate by the reaction of a gas-phase molecular precursor. In the case of tungsten chemical vapor deposition (W-CVD) this precursor is commonly tungsten hexafluoride (WF6) which reacts with an appropriate reductant to yield metallic tungsten. A useful characteristic of the W-CVD chemical reactions is that while they proceed rapidly on silicon or metal substrates, they are inhibited on insulating substrates, such as silicon dioxide (Si02). This selectivity may be exploited in the manufacture of microelectronic devices, resulting in the formation of horizontal contacts and vertical vias by a self-aligning process. However, reaction parameters must be rigorously controlled, and even then tungsten nuclei may form on neighboring oxide surfaces after a short incubation time. Such nuclei can easily cause a short circuit or other defect and thereby render the device inoperable. If this loss of selectivity could be controlled in the practical applications of W-CVD, thereby allowing the incorporation of this technique into ...
Contributing Partner: UNT Libraries
Electrodeposition of Diamond-like Carbon Films

Electrodeposition of Diamond-like Carbon Films

Date: August 2002
Creator: Chen, Minhua
Description: Electrodeposition of diamond-like carbon (DLC) films was studied on different substrates using two different electrochemical methods. The first electrochemical method using a three-electrode system was studied to successfully deposit hydrogenated DLC films on Nickel, Copper and Brass substrates. The as-deposited films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV). A variety of experimental parameters were shown to affect the deposition process. The second electrochemical method was developed for the first time to deposit hydrogen free DLC films on Ni substrates through a two-electrode system. The as-deposited films were characterized by Raman spectroscopy and FTIR. According to Raman spectra, a high fraction of diamond nanocrystals were found to form in the films. Several possible mechanisms were discussed for each deposition method. An electrochemical method was proposed to deposit boron-doped diamond films for future work.
Contributing Partner: UNT Libraries
Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments

Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments

Date: August 2002
Creator: Ponnuswamy, Thomas Anand
Description: Hydrogen terminated silicon surfaces have been utilized to develop sensors for semiconductor and environmental applications. The interaction of these surfaces with different environments has also been studied in detail. The sensor assembly relevant to the semiconductor industry utilizes a silicon-based sensor to detect trace levels of metallic contaminants in hydrofluoric acid. The sensor performance with respect to two non-contaminating reference electrode systems was evaluated. In the first case, conductive diamond was used as a reference electrode. In the second case, a dual silicon electrode system was used with one of the silicon-based electrodes protected with an anion permeable membrane behaving as the quasi reference electrode. Though both systems could function well as a suitable reference system, the dual silicon electrode design showed greater compatibility for the on-line detection of metallic impurities in HF etching baths. The silicon-based sensor assembly was able to detect parts- per-trillion to parts-per-billion levels of metal ion impurities in HF. The sensor assembly developed for the environmental application makes use of a novel method for the detection of Ni2+using attenuated total reflection (ATR) technique. The nickel infrared sensor was prepared on a silicon ATR crystal uniformly coated by a 1.5 micron Nafion film embedded with dimethylglyoxime ...
Contributing Partner: UNT Libraries
Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Access: Use of this item is restricted to the UNT Community.
Date: May 2003
Creator: Arunagiri, Tiruchirapalli Natarajan
Description: An extremely facile and novel method called spontaneous deposition, to deposit noble metal nanoparticles on a most stable form of carbon (C) i.e. diamond is presented. Nanometer sized particles of such metals as platinum (Pt), palladium (Pd), gold (Au), copper (Cu) and silver (Ag) could be deposited on boron-doped (B-doped) polycrystalline diamond films grown on silicon (Si) substrates, by simply immersing the diamond/Si sample in hydrofluoric acid (HF) solution containing ions of the corresponding metal. The electrons for the reduction of metal ions came from the Si back substrate. The diamond/Si interfacial ohmic contact was of paramount importance to the observation of the spontaneous deposition process. The metal/diamond (M/C) surfaces were investigated using Raman spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffractometry (XRD). The morphology (i.e. size and distribution) of metal nanoparticles deposits could be controlled by adjusting the metal ion concentration, HF concentration and deposition time. XRD data indicate the presence of textured and strained crystal lattices of Pd for different Pd/C morphologies, which seem to influence the electrocatalytic oxidation of formaldehyde (HCHO). The sensitivity of electrocatalytic reactions to surface crystal structure implies that M/C could be fabricated for specific electrocatalytic applications. The research also ...
Contributing Partner: UNT Libraries
Copper Electrodeposition on Iridium, Ruthenium and Its Conductive Oxide Substrate

Copper Electrodeposition on Iridium, Ruthenium and Its Conductive Oxide Substrate

Date: December 2003
Creator: Huang, Long
Description: The aim of this thesis was to investigate the physical and electrochemical properties of sub monolayer and monolayer of copper deposition on the polycrystalline iridium, ruthenium and its conductive oxide. The electrochemical methods cyclic voltammetry (CV) and chronocoulometry were used to study the under potential deposition. The electrochemical methods to oxidize the ruthenium metal are presented, and the electrochemical properties of the oxide ruthenium are studied. The full range of CV is presented in this thesis, and the distances between the stripping bulk peak and stripping UPD peak in various concentration of CuSO4 on iridium, ruthenium and its conductive oxide are shown, which yields thermodynamic data on relative difference of bonding strength between Cu-Ru/Ir atoms and Cu-Cu atoms. The monolayer of UPD on ruthenium is about 0.5mL, and on oxidized ruthenium is around 0.9mL to 1.0mL. The conductive oxide ruthenium presents the similar properties of ruthenium metal. The pH effect of stripping bulk peak and stripping UPD peak of copper deposition on ruthenium and oxide ruthenium was investigated. The stripping UPD peak and stripping bulk peak disappeared after the pH ≥ 3 on oxidized ruthenium electrode, and a new peak appeared, which means the condition of pH is very important. ...
Contributing Partner: UNT Libraries
Fabrication and light scattering study of multi-responsive nanostructured hydrogels and water-soluble polymers.

Fabrication and light scattering study of multi-responsive nanostructured hydrogels and water-soluble polymers.

Date: December 2003
Creator: Xia, Xiaohu
Description: Monodispersed microgels composed of poly-acrylic acid (PAAc) and poly(N-isopropylacrylamide) (PNIPAM) interpenetrating networks were synthesized by 2-step method with first preparing PNIPAM microgel and then polymerizing acrylic acid that interpenetrates into the PNIPAM network. The semi-dilute aqueous solutions of the PNIPAM-PAAc IPN microgels exhibit an inverse thermo-reversible gelation. Furthermore, IPN microgels undergo the reversible volume phase transitions in response to both pH and temperature changes associated to PAAc and PNIPAM, respectively. Three applications based on this novel hydrogel system are presented: a rich phase diagram that opens a door for fundamental study of phase behavior of colloidal systems, a thermally induced viscosity change, and in situ hydrogel formation for controlled drug release. Clay-polymer hydrogel composites have been synthesized based on PNIPAM gels containing 0.25 to 4 wt% of the expandable smectic clay Na-montmorillonite layered silicates (Na-MLS). For Na-MLS concentrations ranging from 2.0 to 3.2 wt%, the composite gels have larger swelling ratio and stronger mechanical strength than those for a pure PNIPAM. The presence of Na-MLS does not affect the value of the lower critical solution temperature (LCST) of the PNIPAM. Surfactant-free hydroxypropyl cellulose (HPC) microgels have been synthesized in salt solution. In a narrow sodium chloride concentration range from 1.3 ...
Contributing Partner: UNT Libraries
Interfacial Electrochemistry and Surface Characterization: Hydrogen Terminated Silicon, Electrolessly Deposited Palladium & Platinum on Pyrolyzed Photoresist Films and Electrodeposited Copper on Iridium

Interfacial Electrochemistry and Surface Characterization: Hydrogen Terminated Silicon, Electrolessly Deposited Palladium & Platinum on Pyrolyzed Photoresist Films and Electrodeposited Copper on Iridium

Date: December 2003
Creator: Chan, Raymond
Description: Hydrogen terminated silicon surfaces play an important role in the integrated circuit (IC) industry. Ultra-pure water is extensively used for the cleaning and surface preparation of silicon surfaces. This work studies the effects of ultra-pure water on hydrogen passivated silicon surfaces in a short time frame of 120 minutes using fourier transform infrared spectroscopy – attenuated total reflection techniques. Varying conditions of ultra-pure water are used. This includes dissolved oxygen poor media after nitrogen bubbling and equilibration under nitrogen atmosphere, as well as metal contaminated solutions. Both microscopically rough and ideal monohydride terminated surfaces are examined. Hydrogen terminated silicon is also used as the sensing electrode for a potentiometric sensor for ultra-trace amounts of metal contaminants. Previous studies show the use of this potentiometric electrode sensor in hydrofluoric acid solution. This work is able to shows sensor function in ultra-pure water media without the need for further addition of hydrofluoric acid. This is considered a boon for the sensor due to the hazardous nature of hydrofluoric acid. Thin carbon films can be formed by spin coating photoresist onto silicon substrates and pyrolyzing at 1000 degrees C under reducing conditions. This work also shows that the electroless deposition of palladium and ...
Contributing Partner: UNT Libraries
Study of Interactions Between Diffusion Barrier Layers and Low-k Dielectric Materials for Copper/Low-k Integration

Study of Interactions Between Diffusion Barrier Layers and Low-k Dielectric Materials for Copper/Low-k Integration

Date: December 2003
Creator: Tong, Jinhong
Description: The shift to the Cu/low-k interconnect scheme requires the development of diffusion barrier/adhesion promoter materials that provide excellent performance in preventing the diffusion and intermixing of Cu into the adjacent dielectrics. The integration of Cu with low-k materials may decrease RC delays in signal propagation but pose additional problems because such materials are often porous and contain significant amounts of carbon. Therefore barrier metal diffusion into the dielectric and the formation of interfacial carbides and oxides are of significant concern. The objective of the present research is to investigate the fundamental surface interactions between diffusion barriers and various low-k dielectric materials. Two major diffusion barriers¾ tatalum (Ta) and titanium nitride (TiN) are prepared by DC magnetron sputtering and metal-organic chemical vapor deposition (MOCVD), respectively. Surface analytical techniques, such as X-ray photoelectronic spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are employed. Ta sputter-deposited onto a Si-O-C low dielectric constant substrate forms a reaction layer composed of Ta oxide and TaC. The composition of the reaction layer varies with deposition rate (1 Å-min-1 vs. 2 Å-sec-1), but in both cases, the thickness of the TaC layer is found to be at least 30 Å on the basis of ...
Contributing Partner: UNT Libraries
Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films

Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films

Date: May 2004
Creator: Pritchett, Merry
Description: Semiconductor circuitry feature miniaturization continues in response to Moore 's Law pushing the limits of aluminum and forcing the transition to Cu due to its lower resistivity and electromigration. Copper diffuses into silicon dioxide under thermal and electrical stresses, requiring the use of barriers to inhibit diffusion, adding to the insulator thickness and delay time, or replacement of SiO2 with new insulator materials that can inhibit diffusion while enabling Cu wetting. This study proposes modified amorphous silicon carbon hydrogen (a-Si:C:H) films as possible diffusion barriers and replacements for SiO2 between metal levels, interlevel dielectric (ILD), or between metal lines (IMD), based upon the diffusion inhibition of previous a-Si:C:H species expected lower dielectric constants, acceptable thermal conductivity. Vinyltrimethylsilane (VTMS) precursor was condensed on a titanium substrate at 90 K and bombarded with electron beams to induce crosslinking and form polymerized a-Si:C:H films. Modifications of the films with hydroxyl and nitrogen was accomplished by dosing the condensed VTMS with water or ammonia before electron bombardment producing a-Si:C:H/OH and a-Si:C:H/N and a-Si:C:H/OH/N polymerized films in expectation of developing films that would inhibit copper diffusion and promote Cu adherence, wetting, on the film surface. X-ray Photoelectron Spectroscopy was used to characterize Cu metallization of ...
Contributing Partner: UNT Libraries
Electrodeposition of adherent copper film on unmodified tungsten.

Electrodeposition of adherent copper film on unmodified tungsten.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Wang, Chen
Description: Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V vs Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which stick the scotch tape on the sample, then peel off the tape and see if the copper film peels off or not. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicate that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics do not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST