You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Degree Discipline: Computer Science
Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Date: May 2006
Creator: Abbas, Kaja Moinudeen
Description: Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with ...
Contributing Partner: UNT Libraries
Boosting for Learning From Imbalanced, Multiclass Data Sets

Boosting for Learning From Imbalanced, Multiclass Data Sets

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Abouelenien, Mohamed
Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared ...
Contributing Partner: UNT Libraries
Qos Aware Service Oriented Architecture

Qos Aware Service Oriented Architecture

Date: August 2013
Creator: Adepu, Sagarika
Description: Service-oriented architecture enables web services to operate in a loosely-coupled setting and provides an environment for dynamic discovery and use of services over a network using standards such as WSDL, SOAP, and UDDI. Web service has both functional and non-functional characteristics. This thesis work proposes to add QoS descriptions (non-functional properties) to WSDL and compose various services to form a business process. This composition of web services also considers QoS properties along with functional properties and the composed services can again be published as a new Web Service and can be part of any other composition using Composed WSDL.
Contributing Partner: UNT Libraries
Real-time Rendering of Burning Objects in Video Games

Real-time Rendering of Burning Objects in Video Games

Date: August 2013
Creator: Amarasinghe, Dhanyu Eshaka
Description: In recent years there has been growing interest in limitless realism in computer graphics applications. Among those, my foremost concentration falls into the complex physical simulations and modeling with diverse applications for the gaming industry. Different simulations have been virtually successful by replicating the details of physical process. As a result, some were strong enough to lure the user into believable virtual worlds that could destroy any sense of attendance. In this research, I focus on fire simulations and its deformation process towards various virtual objects. In most game engines model loading takes place at the beginning of the game or when the game is transitioning between levels. Game models are stored in large data structures. Since changing or adjusting a large data structure while the game is proceeding may adversely affect the performance of the game. Therefore, developers may choose to avoid procedural simulations to save resources and avoid interruptions on performance. I introduce a process to implement a real-time model deformation while maintaining performance. It is a challenging task to achieve high quality simulation while utilizing minimum resources to represent multiple events in timely manner. Especially in video games, this overwhelming criterion would be robust enough to sustain ...
Contributing Partner: UNT Libraries
An Integrated Architecture for Ad Hoc Grids

An Integrated Architecture for Ad Hoc Grids

Date: May 2006
Creator: Amin, Kaizar Abdul Husain
Description: Extensive research has been conducted by the grid community to enable large-scale collaborations in pre-configured environments. grid collaborations can vary in scale and motivation resulting in a coarse classification of grids: national grid, project grid, enterprise grid, and volunteer grid. Despite the differences in scope and scale, all the traditional grids in practice share some common assumptions. They support mutually collaborative communities, adopt a centralized control for membership, and assume a well-defined non-changing collaboration. To support grid applications that do not confirm to these assumptions, we propose the concept of ad hoc grids. In the context of this research, we propose a novel architecture for ad hoc grids that integrates a suite of component frameworks. Specifically, our architecture combines the community management framework, security framework, abstraction framework, quality of service framework, and reputation framework. The overarching objective of our integrated architecture is to support a variety of grid applications in a self-controlled fashion with the help of a self-organizing ad hoc community. We introduce mechanisms in our architecture that successfully isolates malicious elements from the community, inherently improving the quality of grid services and extracting deterministic quality assurances from the underlying infrastructure. We also emphasize on the technology-independence of our ...
Contributing Partner: UNT Libraries
Resource Efficient and Scalable Routing using Intelligent Mobile Agents

Resource Efficient and Scalable Routing using Intelligent Mobile Agents

Date: May 2003
Creator: Amin, Kaizar Abdul Husain
Description: Many of the contemporary routing algorithms use simple mechanisms such as flooding or broadcasting to disseminate the routing information available to them. Such routing algorithms cause significant network resource overhead due to the large number of messages generated at each host/router throughout the route update process. Many of these messages are wasteful since they do not contribute to the route discovery process. Reducing the resource overhead may allow for several algorithms to be deployed in a wide range of networks (wireless and ad-hoc) which require a simple routing protocol due to limited availability of resources (memory and bandwidth). Motivated by the need to reduce the resource overhead associated with routing algorithms a new implementation of distance vector routing algorithm using an agent-based paradigm known as Agent-based Distance Vector Routing (ADVR) has been proposed. In ADVR, the ability of route discovery and message passing shifts from the nodes to individual agents that traverse the network, co-ordinate with each other and successively update the routing tables of the nodes they visit.
Contributing Partner: UNT Libraries
Privacy Management for Online Social Networks

Privacy Management for Online Social Networks

Date: August 2013
Creator: Baatarjav, Enkh-Amgalan
Description: One in seven people in the world use online social networking for a variety of purposes -- to keep in touch with friends and family, to share special occasions, to broadcast announcements, and more. The majority of society has been bought into this new era of communication technology, which allows everyone on the internet to share information with friends. Since social networking has rapidly become a main form of communication, holes in privacy have become apparent. It has come to the point that the whole concept of sharing information requires restructuring. No longer are online social networks simply technology available for a niche market; they are in use by all of society. Thus it is important to not forget that a sense of privacy is inherent as an evolutionary by-product of social intelligence. In any context of society, privacy needs to be a part of the system in order to help users protect themselves from others. This dissertation attempts to address the lack of privacy management in online social networks by designing models which understand the social science behind how we form social groups and share information with each other. Social relationship strength was modeled using activity patterns, vocabulary usage, ...
Contributing Partner: UNT Libraries
Unique Channel Email System

Unique Channel Email System

Date: August 2015
Creator: Balakchiev, Milko
Description: Email connects 85% of the world. This paper explores the pattern of information overload encountered by majority of email users and examine what steps key email providers are taking to combat the problem. Besides fighting spam, popular email providers offer very limited tools to reduce the amount of unwanted incoming email. Rather, there has been a trend to expand storage space and aid the organization of email. Storing email is very costly and harmful to the environment. Additionally, information overload can be detrimental to productivity. We propose a simple solution that results in drastic reduction of unwanted mail, also known as graymail.
Contributing Partner: UNT Libraries
The Role of Intelligent Mobile Agents in Network Management and Routing

The Role of Intelligent Mobile Agents in Network Management and Routing

Date: December 2000
Creator: Balamuru, Vinay Gopal
Description: In this research, the application of intelligent mobile agents to the management of distributed network environments is investigated. Intelligent mobile agents are programs which can move about network systems in a deterministic manner in carrying their execution state. These agents can be considered an application of distributed artificial intelligence where the (usually small) agent code is moved to the data and executed locally. The mobile agent paradigm offers potential advantages over many conventional mechanisms which move (often large) data to the code, thereby wasting available network bandwidth. The performance of agents in network routing and knowledge acquisition has been investigated and simulated. A working mobile agent system has also been designed and implemented in JDK 1.2.
Contributing Partner: UNT Libraries
Multi-perspective, Multi-modal Image Registration and Fusion

Multi-perspective, Multi-modal Image Registration and Fusion

Date: August 2012
Creator: Belkhouche, Mohammed Yassine
Description: Multi-modal image fusion is an active research area with many civilian and military applications. Fusion is defined as strategic combination of information collected by various sensors from different locations or different types in order to obtain a better understanding of an observed scene or situation. Fusion of multi-modal images cannot be completed unless these two modalities are spatially aligned. In this research, I consider two important problems. Multi-modal, multi-perspective image registration and decision level fusion of multi-modal images. In particular, LiDAR and visual imagery. Multi-modal image registration is a difficult task due to the different semantic interpretation of features extracted from each modality. This problem is decoupled into three sub-problems. The first step is identification and extraction of common features. The second step is the determination of corresponding points. The third step consists of determining the registration transformation parameters. Traditional registration methods use low level features such as lines and corners. Using these features require an extensive optimization search in order to determine the corresponding points. Many methods use global positioning systems (GPS), and a calibrated camera in order to obtain an initial estimate of the camera parameters. The advantages of our work over the previous works are the following. ...
Contributing Partner: UNT Libraries
Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in  the Disease Prevalence in Homogenous and Heterogeneous Human Populations

Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations

Date: August 2016
Creator: Bravo-Salgado, Angel D
Description: The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to ...
Contributing Partner: UNT Libraries
Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Date: August 2015
Creator: Bristow, Kelly H.
Description: Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature ...
Contributing Partner: UNT Libraries
Investigating the Extractive Summarization of Literary Novels

Investigating the Extractive Summarization of Literary Novels

Date: December 2011
Creator: Ceylan, Hakan
Description: Abstract Due to the vast amount of information we are faced with, summarization has become a critical necessity of everyday human life. Given that a large fraction of the electronic documents available online and elsewhere consist of short texts such as Web pages, news articles, scientific reports, and others, the focus of natural language processing techniques to date has been on the automation of methods targeting short documents. We are witnessing however a change: an increasingly larger number of books become available in electronic format. This means that the need for language processing techniques able to handle very large documents such as books is becoming increasingly important. This thesis addresses the problem of summarization of novels, which are long and complex literary narratives. While there is a significant body of research that has been carried out on the task of automatic text summarization, most of this work has been concerned with the summarization of short documents, with a particular focus on news stories. However, novels are different in both length and genre, and consequently different summarization techniques are required. This thesis attempts to close this gap by analyzing a new domain for summarization, and by building unsupervised and supervised systems ...
Contributing Partner: UNT Libraries
Using Reinforcement Learning in Partial Order Plan Space

Using Reinforcement Learning in Partial Order Plan Space

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Ceylan, Hakan
Description: Partial order planning is an important approach that solves planning problems without completely specifying the orderings between the actions in the plan. This property provides greater flexibility in executing plans; hence making the partial order planners a preferred choice over other planning methodologies. However, in order to find partially ordered plans, partial order planners perform a search in plan space rather than in space of world states and an uninformed search in plan space leads to poor efficiency. In this thesis, I discuss applying a reinforcement learning method, called First-visit Monte Carlo method, to partial order planning in order to design agents which do not need any training data or heuristics but are still able to make informed decisions in plan space based on experience. Communicating effectively with the agent is crucial in reinforcement learning. I address how this task was accomplished in plan space and the results from an evaluation of a blocks world test bed.
Contributing Partner: UNT Libraries
Natural Language Interfaces to Databases

Natural Language Interfaces to Databases

Date: December 2006
Creator: Chandra, Yohan
Description: Natural language interfaces to databases (NLIDB) are systems that aim to bridge the gap between the languages used by humans and computers, and automatically translate natural language sentences to database queries. This thesis proposes a novel approach to NLIDB, using graph-based models. The system starts by collecting as much information as possible from existing databases and sentences, and transforms this information into a knowledge base for the system. Given a new question, the system will use this knowledge to analyze and translate the sentence into its corresponding database query statement. The graph-based NLIDB system uses English as the natural language, a relational database model, and SQL as the formal query language. In experiments performed with natural language questions ran against a large database containing information about U.S. geography, the system showed good performance compared to the state-of-the-art in the field.
Contributing Partner: UNT Libraries
Measuring Vital Signs Using Smart Phones

Measuring Vital Signs Using Smart Phones

Date: December 2010
Creator: Chandrasekaran, Vikram
Description: Smart phones today have become increasingly popular with the general public for its diverse abilities like navigation, social networking, and multimedia facilities to name a few. These phones are equipped with high end processors, high resolution cameras, built-in sensors like accelerometer, orientation-sensor, light-sensor, and much more. According to comScore survey, 25.3% of US adults use smart phones in their daily lives. Motivated by the capability of smart phones and their extensive usage, I focused on utilizing them for bio-medical applications. In this thesis, I present a new application for a smart phone to quantify the vital signs such as heart rate, respiratory rate and blood pressure with the help of its built-in sensors. Using the camera and a microphone, I have shown how the blood pressure and heart rate can be determined for a subject. People sometimes encounter minor situations like fainting or fatal accidents like car crash at unexpected times and places. It would be useful to have a device which can measure all vital signs in such an event. The second part of this thesis demonstrates a new mode of communication for next generation 9-1-1 calls. In this new architecture, the call-taker will be able to control the ...
Contributing Partner: UNT Libraries
Video Analytics with Spatio-Temporal Characteristics of Activities

Video Analytics with Spatio-Temporal Characteristics of Activities

Date: May 2015
Creator: Cheng, Guangchun
Description: As video capturing devices become more ubiquitous from surveillance cameras to smart phones, the demand of automated video analysis is increasing as never before. One obstacle in this process is to efficiently locate where a human operator’s attention should be, and another is to determine the specific types of activities or actions without ambiguity. It is the special interest of this dissertation to locate spatial and temporal regions of interest in videos and to develop a better action representation for video-based activity analysis. This dissertation follows the scheme of “locating then recognizing” activities of interest in videos, i.e., locations of potentially interesting activities are estimated before performing in-depth analysis. Theoretical properties of regions of interest in videos are first exploited, based on which a unifying framework is proposed to locate both spatial and temporal regions of interest with the same settings of parameters. The approach estimates the distribution of motion based on 3D structure tensors, and locates regions of interest according to persistent occurrences of low probability. Two contributions are further made to better represent the actions. The first is to construct a unifying model of spatio-temporal relationships between reusable mid-level actions which bridge low-level pixels and high-level activities. Dense ...
Contributing Partner: UNT Libraries
An Approach Towards Self-Supervised Classification Using Cyc

An Approach Towards Self-Supervised Classification Using Cyc

Date: December 2006
Creator: Coursey, Kino High
Description: Due to the long duration required to perform manual knowledge entry by human knowledge engineers it is desirable to find methods to automatically acquire knowledge about the world by accessing online information. In this work I examine using the Cyc ontology to guide the creation of Naïve Bayes classifiers to provide knowledge about items described in Wikipedia articles. Given an initial set of Wikipedia articles the system uses the ontology to create positive and negative training sets for the classifiers in each category. The order in which classifiers are generated and used to test articles is also guided by the ontology. The research conducted shows that a system can be created that utilizes statistical text classification methods to extract information from an ad-hoc generated information source like Wikipedia for use in a formal semantic ontology like Cyc. Benefits and limitations of the system are discussed along with future work.
Contributing Partner: UNT Libraries
Keywords in the mist:  Automated keyword extraction for very large documents and back of the book indexing.

Keywords in the mist: Automated keyword extraction for very large documents and back of the book indexing.

Date: May 2008
Creator: Csomai, Andras
Description: This research addresses the problem of automatic keyphrase extraction from large documents and back of the book indexing. The potential benefits of automating this process are far reaching, from improving information retrieval in digital libraries, to saving countless man-hours by helping professional indexers creating back of the book indexes. The dissertation introduces a new methodology to evaluate automated systems, which allows for a detailed, comparative analysis of several techniques for keyphrase extraction. We introduce and evaluate both supervised and unsupervised techniques, designed to balance the resource requirements of an automated system and the best achievable performance. Additionally, a number of novel features are proposed, including a statistical informativeness measure based on chi statistics; an encyclopedic feature that taps into the vast knowledge base of Wikipedia to establish the likelihood of a phrase referring to an informative concept; and a linguistic feature based on sophisticated semantic analysis of the text using current theories of discourse comprehension. The resulting keyphrase extraction system is shown to outperform the current state of the art in supervised keyphrase extraction by a large margin. Moreover, a fully automated back of the book indexing system based on the keyphrase extraction system was shown to lead to back ...
Contributing Partner: UNT Libraries
Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

Date: December 2015
Creator: Dahal, Ashok
Description: There are several types of disorders that affect our colon’s ability to function properly such as colorectal cancer, ulcerative colitis, diverticulitis, irritable bowel syndrome and colonic polyps. Automatic detection of these diseases would inform the endoscopist of possible sub-optimal inspection during the colonoscopy procedure as well as save time during post-procedure evaluation. But existing systems only detects few of those disorders like colonic polyps. In this dissertation, we address the automatic detection of another important disorder called ulcerative colitis. We propose a novel texture feature extraction technique to detect the severity of ulcerative colitis in block, image, and video levels. We also enhance the current informative frame filtering methods by detecting water and bubble frames using our proposed technique. Our feature extraction algorithm based on accumulation of pixel value difference provides better accuracy at faster speed than the existing methods making it highly suitable for real-time systems. We also propose a hybrid approach in which our feature method is combined with existing feature method(s) to provide even better accuracy. We extend the block and image level detection method to video level severity score calculation and shot segmentation. Also, the proposed novel feature extraction method can detect water and bubble frames ...
Contributing Partner: UNT Libraries
Graph-Based Keyphrase Extraction Using Wikipedia

Graph-Based Keyphrase Extraction Using Wikipedia

Date: December 2010
Creator: Dandala, Bharath
Description: Keyphrases describe a document in a coherent and simple way, giving the prospective reader a way to quickly determine whether the document satisfies their information needs. The pervasion of huge amount of information on Web, with only a small amount of documents have keyphrases extracted, there is a definite need to discover automatic keyphrase extraction systems. Typically, a document written by human develops around one or more general concepts or sub-concepts. These concepts or sub-concepts should be structured and semantically related with each other, so that they can form the meaningful representation of a document. Considering the fact, the phrases or concepts in a document are related to each other, a new approach for keyphrase extraction is introduced that exploits the semantic relations in the document. For measuring the semantic relations between concepts or sub-concepts in the document, I present a comprehensive study aimed at using collaboratively constructed semantic resources like Wikipedia and its link structure. In particular, I introduce a graph-based keyphrase extraction system that exploits the semantic relations in the document and features such as term frequency. I evaluated the proposed system using novel measures and the results obtained compare favorably with previously published results on established benchmarks.
Contributing Partner: UNT Libraries
Multilingual Word Sense Disambiguation Using Wikipedia

Multilingual Word Sense Disambiguation Using Wikipedia

Date: August 2013
Creator: Dandala, Bharath
Description: Ambiguity is inherent to human language. In particular, word sense ambiguity is prevalent in all natural languages, with a large number of the words in any given language carrying more than one meaning. Word sense disambiguation is the task of automatically assigning the most appropriate meaning to a polysemous word within a given context. Generally the problem of resolving ambiguity in literature has revolved around the famous quote “you shall know the meaning of the word by the company it keeps.” In this thesis, we investigate the role of context for resolving ambiguity through three different approaches. Instead of using a predefined monolingual sense inventory such as WordNet, we use a language-independent framework where the word senses and sense-tagged data are derived automatically from Wikipedia. Using Wikipedia as a source of sense-annotations provides the much needed solution for knowledge acquisition bottleneck. In order to evaluate the viability of Wikipedia based sense-annotations, we cast the task of disambiguating polysemous nouns as a monolingual classification task and experimented on lexical samples from four different languages (viz. English, German, Italian and Spanish). The experiments confirm that the Wikipedia based sense annotations are reliable and can be used to construct accurate monolingual sense classifiers. ...
Contributing Partner: UNT Libraries
Algorithm Optimizations in Genomic Analysis Using Entropic Dissection

Algorithm Optimizations in Genomic Analysis Using Entropic Dissection

Date: August 2015
Creator: Danks, Jacob R.
Description: In recent years, the collection of genomic data has skyrocketed and databases of genomic data are growing at a faster rate than ever before. Although many computational methods have been developed to interpret these data, they tend to struggle to process the ever increasing file sizes that are being produced and fail to take advantage of the advances in multi-core processors by using parallel processing. In some instances, loss of accuracy has been a necessary trade off to allow faster computation of the data. This thesis discusses one such algorithm that has been developed and how changes were made to allow larger input file sizes and reduce the time required to achieve a result without sacrificing accuracy. An information entropy based algorithm was used as a basis to demonstrate these techniques. The algorithm dissects the distinctive patterns underlying genomic data efficiently requiring no a priori knowledge, and thus is applicable in a variety of biological research applications. This research describes how parallel processing and object-oriented programming techniques were used to process larger files in less time and achieve a more accurate result from the algorithm. Through object oriented techniques, the maximum allowable input file size was significantly increased from 200 ...
Contributing Partner: UNT Libraries
Performance Analysis of Wireless Networks with QoS Adaptations

Performance Analysis of Wireless Networks with QoS Adaptations

Date: August 2003
Creator: Dash, Trivikram
Description: The explosive demand for multimedia and fast transmission of continuous media on wireless networks means the simultaneous existence of traffic requiring different qualities of service (QoS). In this thesis, several efficient algorithms have been developed which offer several QoS to the end-user. We first look at a request TDMA/CDMA protocol for supporting wireless multimedia traffic, where CDMA is laid over TDMA. Then we look at a hybrid push-pull algorithm for wireless networks, and present a generalized performance analysis of the proposed protocol. Some of the QoS factors considered include customer retrial rates due to user impatience and system timeouts and different levels of priority and weights for mobile hosts. We have also looked at how customer impatience and system timeouts affect the QoS provided by several queuing and scheduling schemes such as FIFO, priority, weighted fair queuing, and the application of the stretch-optimal algorithm to scheduling.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST