You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Date: May 2006
Creator: Abbas, Kaja Moinudeen
Description: Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with ...
Contributing Partner: UNT Libraries
Boosting for Learning From Imbalanced, Multiclass Data Sets

Boosting for Learning From Imbalanced, Multiclass Data Sets

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Abouelenien, Mohamed
Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared ...
Contributing Partner: UNT Libraries
Joint Schemes for Physical Layer Security and Error Correction

Joint Schemes for Physical Layer Security and Error Correction

Date: August 2011
Creator: Adamo, Oluwayomi Bamidele
Description: The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A cipher-based cryptosystem is also presented in this research. The complexity of this scheme is reduced compared to conventional schemes. The securities of the ciphers are analyzed against known-plaintext and chosen-plaintext attacks and are found to be secure. Randomization test was also conducted on these schemes and the results are presented. For the proof of concept, the schemes were implemented in software and hardware and these shows a reduction in hardware usage compared to conventional schemes. As a result, joint schemes for error correction and security provide security to the physical layer of wireless communication systems, a layer in the protocol stack where currently little or no security is implemented. In this physical layer security approach, the properties of powerful error correcting codes are exploited to deliver reliability to the intended parties, high security against eavesdroppers and efficiency in communication system. The notion of a highly secure and reliable ...
Contributing Partner: UNT Libraries
VLSI Architecture and FPGA Prototyping of a Secure Digital Camera for Biometric Application

VLSI Architecture and FPGA Prototyping of a Secure Digital Camera for Biometric Application

Date: August 2006
Creator: Adamo, Oluwayomi Bamidele
Description: This thesis presents a secure digital camera (SDC) that inserts biometric data into images found in forms of identification such as the newly proposed electronic passport. However, putting biometric data in passports makes the data vulnerable for theft, causing privacy related issues. An effective solution to combating unauthorized access such as skimming (obtaining data from the passport's owner who did not willingly submit the data) or eavesdropping (intercepting information as it moves from the chip to the reader) could be judicious use of watermarking and encryption at the source end of the biometric process in hardware like digital camera or scanners etc. To address such issues, a novel approach and its architecture in the framework of a digital camera, conceptualized as an SDC is presented. The SDC inserts biometric data into passport image with the aid of watermarking and encryption processes. The VLSI (very large scale integration) architecture of the functional units of the SDC such as watermarking and encryption unit is presented. The result of the hardware implementation of Rijndael advanced encryption standard (AES) and a discrete cosine transform (DCT) based visible and invisible watermarking algorithm is presented. The prototype chip can carry out simultaneous encryption and watermarking, which ...
Contributing Partner: UNT Libraries
Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Date: May 2013
Creator: Akumalla, Sarath Chandra
Description: Hand and arm gestures are a great way of communication when you don't want to be heard, quieter and often more reliable than whispering into a radio mike. In recent years hand gesture identification became a major active area of research due its use in various applications. The objective of my work is to develop an integrated sensor system, which will enable tactical squads and SWAT teams to communicate when there is absence of a Line of Sight or in the presence of any obstacles. The gesture set involved in this work is the standardized hand signals for close range engagement operations used by military and SWAT teams. The gesture sets involved in this work are broadly divided into finger movements and arm movements. The core components of the integrated sensor system are: Surface EMG sensors, Flex sensors and accelerometers. Surface EMG is the electrical activity produced by muscle contractions and measured by sensors directly attached to the skin. Bend Sensors use a piezo resistive material to detect the bend. The sensor output is determined by both the angle between the ends of the sensor as well as the flex radius. Accelerometers sense the dynamic acceleration and inclination in 3 ...
Contributing Partner: UNT Libraries
Comparison and Evaluation of Existing Analog Circuit Simulator using Sigma-Delta Modulator

Comparison and Evaluation of Existing Analog Circuit Simulator using Sigma-Delta Modulator

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Ale, Anil Kumar
Description: In the world of VLSI (very large scale integration) technology, there are many different types of circuit simulators that are used to design and predict the circuit behavior before actual fabrication of the circuit. In this thesis, I compared and evaluated existing circuit simulators by considering standard benchmark circuits. The circuit simulators which I evaluated and explored are Ngspice, Tclspice, Winspice (open source) and Spectre® (commercial). I also tested standard benchmarks using these circuit simulators and compared their outputs. The simulators are evaluated using design metrics in order to quantify their performance and identify efficient circuit simulators. In addition, I designed a sigma-delta modulator and its individual components using the analog behavioral language Verilog-A. Initially, I performed simulations of individual components of the sigma-delta modulator and later of the whole system. Finally, CMOS (complementary metal-oxide semiconductor) transistor-level circuits were designed for the differential amplifier, operational amplifier and comparator of the modulator.
Contributing Partner: UNT Libraries
An Integrated Architecture for Ad Hoc Grids

An Integrated Architecture for Ad Hoc Grids

Date: May 2006
Creator: Amin, Kaizar Abdul Husain
Description: Extensive research has been conducted by the grid community to enable large-scale collaborations in pre-configured environments. grid collaborations can vary in scale and motivation resulting in a coarse classification of grids: national grid, project grid, enterprise grid, and volunteer grid. Despite the differences in scope and scale, all the traditional grids in practice share some common assumptions. They support mutually collaborative communities, adopt a centralized control for membership, and assume a well-defined non-changing collaboration. To support grid applications that do not confirm to these assumptions, we propose the concept of ad hoc grids. In the context of this research, we propose a novel architecture for ad hoc grids that integrates a suite of component frameworks. Specifically, our architecture combines the community management framework, security framework, abstraction framework, quality of service framework, and reputation framework. The overarching objective of our integrated architecture is to support a variety of grid applications in a self-controlled fashion with the help of a self-organizing ad hoc community. We introduce mechanisms in our architecture that successfully isolates malicious elements from the community, inherently improving the quality of grid services and extracting deterministic quality assurances from the underlying infrastructure. We also emphasize on the technology-independence of our ...
Contributing Partner: UNT Libraries
Resource Efficient and Scalable Routing using Intelligent Mobile Agents

Resource Efficient and Scalable Routing using Intelligent Mobile Agents

Date: May 2003
Creator: Amin, Kaizar Abdul Husain
Description: Many of the contemporary routing algorithms use simple mechanisms such as flooding or broadcasting to disseminate the routing information available to them. Such routing algorithms cause significant network resource overhead due to the large number of messages generated at each host/router throughout the route update process. Many of these messages are wasteful since they do not contribute to the route discovery process. Reducing the resource overhead may allow for several algorithms to be deployed in a wide range of networks (wireless and ad-hoc) which require a simple routing protocol due to limited availability of resources (memory and bandwidth). Motivated by the need to reduce the resource overhead associated with routing algorithms a new implementation of distance vector routing algorithm using an agent-based paradigm known as Agent-based Distance Vector Routing (ADVR) has been proposed. In ADVR, the ability of route discovery and message passing shifts from the nodes to individual agents that traverse the network, co-ordinate with each other and successively update the routing tables of the nodes they visit.
Contributing Partner: UNT Libraries
Resource Management in Wireless Networks

Resource Management in Wireless Networks

Date: August 2006
Creator: Arepally, Anurag
Description: A local call admission control (CAC) algorithm for third generation wireless networks was designed and implemented, which allows for the simulation of network throughput for different spreading factors and various mobility scenarios. A global CAC algorithm is also implemented and used as a benchmark since it is inherently optimized; it yields the best possible performance but has an intensive computational complexity. Optimized local CAC algorithm achieves similar performance as global CAC algorithm at a fraction of the computational cost. Design of a dynamic channel assignment algorithm for IEEE 802.11 wireless systems is also presented. Channels are assigned dynamically depending on the minimal interference generated by the neighboring access points on a reference access point. Analysis of dynamic channel assignment algorithm shows an improvement by a factor of 4 over the default settings of having all access points use the same channel, resulting significantly higher network throughput.
Contributing Partner: UNT Libraries
Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

Date: December 2013
Creator: Ayeh, Eric
Description: This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over the unconstrained energy approach. Second, it considers the detection of random signals in noisy measurements and evaluates the performance of eigenvalue-based signal detectors. Due to their computational simplicity, robustness and performance, these detectors have recently received a lot of attention. When the observed random signal is correlated, several researchers claim that the performance of eigenvalue-based detectors exceeds that of the classical energy detector. However, such claims fail to consider the fact that when the signal is correlated, the optimal detector is the estimator-correlator and not the energy detector. In this dissertation, through theoretical analyses and Monte Carlo simulations, eigenvalue-based detectors ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST