You limited your search to:

  Access Rights: Public
  Partner: UNT Libraries
 Department: Department of Materials Science
 Collection: UNT Theses and Dissertations
Hypotheses for Scratch Behavior of Polymer Systems that Recover

Hypotheses for Scratch Behavior of Polymer Systems that Recover

Date: May 2002
Creator: Bujard, Bernard
Description: Scratch recovery is a desirable property of many polymer systems. The reason why some materials have demonstrated excellent scratch recovery while others do not has been a mystery. Explaining the scratch resistance based upon the hardness of a material or its crosslink density is incorrect. In this thesis, novel polymers were tested in an attempt to discover materials that show excellent scratch recovery - one of the most important parameters in determining the wear of a material. Several hypotheses were developed in an attempt to give an accurate picture of how the chemical structure of a polymer affects its scratch recovery. The results show that high scratch recovery is a complex phenomenon not solely dependent upon the presence of electronegative atoms such as fluorine.
Contributing Partner: UNT Libraries
Preparation and Characterization of a Treated Montmorillonite Clay and Epoxy Nanocomposite

Preparation and Characterization of a Treated Montmorillonite Clay and Epoxy Nanocomposite

Date: December 2000
Creator: Butzloff, Peter Robert
Description: Montmorillonite reinforced polymers are a new development in the area of nanocomposite materials. Since reinforcement of epoxy is important to the development of high strength adhesives and composite matrices, the introduction of montmorillonite to epoxy is of interest. Compositional effects on epoxy reactivity, on molecular relaxation, and on mechanical properties were investigated. Change in reactivity was determined by Differential Scanning Calorimetry. Tensile properties at room temperature indicated improved modulus and retention of strength of the epoxy matrix but a decreased elongation to failure. Depression of dry nanocomposite glass transition was observed for nanocomposites beyond 5% by weight montmorillonite. Samples that were saturated with water showed lower moduli due to the epoxy matrix. The greatest moisture absorption rate was found at 7%, the least at 3%.
Contributing Partner: UNT Libraries
Stability of Field Emitter Arrays to Oxygen Exposures

Stability of Field Emitter Arrays to Oxygen Exposures

Date: December 2002
Creator: Godbole, Soumitra Kumar
Description: The purpose of these experiments was to determine the degradation mechanisms of molybdenum based field emitter arrays to oxygen exposures and to improve the overall reliability. In addition, we also evaluated the emission current stability of gold-coated field emitter arrays to oxygen exposures. oxygen at 1x10-6 torr was introduced into the chamber through a leak valve for different lengths of time and duty cycles. To ensure identical oxygen exposure and experimental measurement conditions, tips on half the area of the FEA were fully coated with gold and the other half were left uncoated. The emission current from the gold coated half was found to degrade much less than that from the uncoated half, in the presence of oxygen. Also in the absence of oxygen, the emission current recovery for the gold-coated side was much quicker than that for the uncoated side.
Contributing Partner: UNT Libraries
Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Date: May 1998
Creator: Gopalanarayanan, Bhaskar
Description: Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tg relaxations, which can aid in improving strength characteristics through energy absorption. The a relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic and with longitudinal molecular structure. The small heat capacity change (ACP) associated with the glass transition indicates the PLC to be rigid rod in nature. The PLC shows a small endotherm associated with the melting. The addition of PLC to the semicrystalline TPI does not significantly affect the Tg or the melting point (Tm). The cold crystallization temperature (Tc) increases with the addition of the PLC, indicating channeling phenomenon. The addition of PLC also causes a negative deviation of the ACP, which is another evidence for channeling. The TPI, PLC and their blends show high thermal stability. The semicrystalline TPI absorbs moisture; this effect decreases with the addition of the PLC. The absorbed moisture does not show any effect on the degradation. The addition of PLC beyond 30 wt.% does not result in an improvement ...
Contributing Partner: UNT Libraries
Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Date: May 2003
Creator: Hernandez-Luna, Alejandro
Description: Nanocomposites with expandable smectites such as montmorillonite layered silicates (MLS) in polymer matrices have attracted extensive application interest. Numerous MLS concentrations have been used with no particular justification. Here, we investigate the effects of MLS dispersion within the matrix and on mechanical performance. The latter is resolved through a three-prong investigation on rate dependent tensile results, time dependent creep results and the influence of a sharp notch in polypropylene (PP) nanocomposites. A fixed concentration of maleated polypropylene (mPP) was utilized as a compatibilizer between the MLS and non-polar PP. Analysis of transmission electron micrographs and X-ray diffraction patterns on the surface and below the surface of our samples revealed a unique skin-core effect induced by the presence of clay. Differential scanning calorimetric and polarized optical microscopic examination of spherulites sizes showed changes in nucleation and growth resulting from both the maleated PP compatibilizer and the MLS. These structural changes resulted in a tough nanocomposite, a concept not reported before in the PP literature. Nonlinear creep analysis of the materials showed two concentrations 3 and 5 % wt of PP, which reduced the compliance in the base PP. The use of thermal wave imaging allowed the identification of ductile failure among ...
Contributing Partner: UNT Libraries
Characterization and mechanical properties of nanoscale precipitates in modified Al-Si-Cu alloys using transmission electron microscopy and 3D atom probe tomography.

Characterization and mechanical properties of nanoscale precipitates in modified Al-Si-Cu alloys using transmission electron microscopy and 3D atom probe tomography.

Date: May 2007
Creator: Hwang, Junyeon
Description: Among the commercial aluminum alloys, aluminum 319 (Al-7wt%Si-4wt%Cu) type alloys are popularly used in automobile engine parts. These alloys have good casting characteristics and excellent mechanical properties resulting from a suitable heat treatment. To get a high strength in the 319 type alloys, grain refining, reducing the porosity, solid solution hardening, and precipitation hardening are preferred. All experimental variables such as solidification condition, composition, and heat treatment are influence on the precipitation behavior; however, precipitation hardening is the most significant because excess alloying elements from supersaturated solid solution form fine particles which act as obstacles to dislocation movement. The challenges of the 319 type alloys arise due to small size of precipitate and complex aging response caused by multi components. It is important to determine the chemical composition, crystal structure, and orientation relationship as well as precipitate morphology in order to understand the precipitation behavior and strengthening mechanism. In this study, the mechanical properties and microstructure were investigated using transmission electron microscopy and three dimensional atom probe tomography. The Mn and Mg effects on the microstructure and mechanical properties are discussed with crystallographic study on the iron intermetallic phases. The microstructural evolution and nucleation study on the precipitates in the ...
Contributing Partner: UNT Libraries
Polymer hydrogel nanoparticles and their networks

Polymer hydrogel nanoparticles and their networks

Date: August 2002
Creator: Lu, Xihua
Description: The thermally responsive hydroxypropyl cellulose (HPC) hydrogel nanoparticles have been synthesized and characterized. The HPC particles were obtained by chemically crosslinking collapsed HPC polymer chains in water-surfactant (dodecyltrimethylammonium bromide) dispersion above the lower critical solution temperature (LCST) of the HPC. The size distributions of microgel particles, measured by dynamic light scattering, have been correlated with synthesis conditions including surfactant concentration, polymer concentration, and reaction temperature. The swelling and phase transition properties of resultant HPC microgels have been analyzed using both static and dynamic light scattering techniques. By first making gel nanoparticles and then covalently bonding them together, we have engineered a new class of gels with two levels of structural hierarchy: the primary network is crosslinked polymer chains in each individual particle, while the secondary network is a system of crosslinked nanoparticles. The covalent bonding contributes to the structural stability of the nanostructured gels, while self-assembly provides them with crystal structures that diffract light, resulting in colors. By using N-isopropylacrylamide copolymer hydrogel nanoparticles, we have synthesized nanoparticle networks that display a striking iridescence like precious opal but are soft and flexible like gelatin. This is in contrast to previous colored hydrogels, which were created either by adding dyes or fluorescent, ...
Contributing Partner: UNT Libraries
Formation and Quantification of Corrosion Deposits in the Power Industry

Formation and Quantification of Corrosion Deposits in the Power Industry

Date: May 2007
Creator: Namduri, Haritha
Description: The presence of deposits on the secondary side of pressurized water reactor (PWR) steam generator systems is one of the main contributors to the high maintenance costs of these generators. Formation and transport of corrosion products formed due to the presence of impurities, metals and metallic oxides in the secondary side of the steam generator units result in formation of deposits. This research deals with understanding the deposit formation and characterization of deposits by studying the samples collected from different units in secondary side system at Comanche Peak Steam Electric Station (CPSES). Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) have been used for studying the phases, morphologies and compositions of the iron oxides formed at Unit 1 and Unit 2 of secondary side of steamgenerator systems. Hematite and magnetite were found to be the dominant phases of iron oxides present in the units. Fe, Cr, O, Ni, Si, Cl and Cu were found in samples collected from both the units. A qualitative method was developed to differentiate iron oxides using laser induced breakdown spectroscopy (LIBS) based on temporal response of iron oxides to a high power laser beam. A quantitative FTIR technique was ...
Contributing Partner: UNT Libraries
Epoxy + liquid crystalline epoxy coreacted networks

Epoxy + liquid crystalline epoxy coreacted networks

Date: December 2000
Creator: Punchaipetch, Prakaipetch
Description: Molecular reinforcement through in-situ polymerization of liquid crystalline epoxies (LCEs) and a non-liquid crystalline epoxy has been investigated. Three LCEs: diglycidyl ether of 4,4'-dihydroxybiphenol (DGE-DHBP) and digylcidyl ether of 4-hydroxyphenyl-4"-hydroxybiphenyl-4'-carboxylate (DGE-HHC), were synthesized and blended with diglycidyl ether of bisphenol F (DGEBP-F) and subsequently cured with anhydride and amine curing agents. Curing kinetics were determined using differential scanning calorimetry (DSC). Parameters for autocatalytic curing kinetics of both pure monomers and blended systems were determined. The extent of cure for both monomers was monitored by using Fourier transform infrared spectroscopy (FT-IR). The glass transitions were evaluated as a function of composition using DSC and dynamic mechanical analysis (DMA). The results show that the LC constituent affects the curing kinetics of the epoxy resin and that the systems are highly miscible. The effects of molecular reinforcement of DGEBP-F by DGE-DHBP and DGE-HHC were investigated. The concentration of the liquid crystalline moiety affects mechanical properties. Tensile, impact and fracture toughness tests results are evaluated. Scanning electron microscopy of the fracture surfaces shows changes in failure mechanisms compared to the pure components. Results indicate that mechanical properties of the blended samples are improved already at low concentration by weight of the LCE added into ...
Contributing Partner: UNT Libraries
Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies.

Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies.

Date: August 2002
Creator: Quevedo-Lopez, Manuel Angel
Description: Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050 °C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixOy are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford backscattering spectroscopy (RBS), heavy ion RBS (HI-RBS), x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HR-TEM), and time of flight and dynamic secondary ion mass spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST