## You limited your search to:

**Partner:**UNT Libraries

**Department:**Department of Mathematics

**Collection:**UNT Theses and Dissertations

### The Continuous Wavelet Transform and the Wave Front Set

**Date:**December 1993

**Creator:**Navarro, Jaime

**Description:**In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277762/

### Steepest Sescent on a Uniformly Convex Space

**Date:**August 1995

**Creator:**Zahran, Mohamad M.

**Description:**This paper contains four main ideas. First, it shows global existence for the steepest descent in the uniformly convex setting. Secondly, it shows existence of critical points for convex functions defined on uniformly convex spaces. Thirdly, it shows an isomorphism between the dual space of H^{1,p}[0,1] and the space H^{1,q}[0,1] where p > 2 and {1/p} + {1/q} = 1. Fourthly, it shows how the Beurling-Denny theorem can be extended to find a useful function from H^{1,p}[0,1] to L_{p}[1,0] where p > 2 and addresses the problem of using that function to establish a relationship between the ordinary and the Sobolev gradients. The paper contains some numerical experiments and two computer codes.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278194/

### Existence of a Sign-Changing Solution to a Superlinear Dirichlet Problem

**Date:**August 1995

**Creator:**Neuberger, John M. (John Michael)

**Description:**We study the existence, multiplicity, and nodal structure of solutions to a superlinear elliptic boundary value problem. Under specific hypotheses on the superlinearity, we show that there exist at least three nontrivial solutions. A pair of solutions are of one sign (positive and negative respectively), and the third solution changes sign exactly once. Our technique is variational, i.e., we study the critical points of the associated action functional to find solutions. First, we define a codimension 1 submanifold of a Sobolev space . This submanifold contains all weak solutions to our problem, and in our case, weak solutions are also classical solutions. We find nontrivial solutions which are local minimizers of our action functional restricted to various subsets of this submanifold. Additionally, if nondegenerate, the one-sign solutions are of Morse index 1 and the sign-changing solution has Morse index 2. We also establish that the action level of the sign-changing solution is bounded below by the sum of the two lesser levels of the one-sign solutions. Our results extend and complement the findings of Z. Q. Wang ([W]). We include a small sample of earlier works in the general area of superlinear elliptic boundary value problems.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278179/

### Characterizations of Some Combinatorial Geometries

**Date:**August 1992

**Creator:**Yoon, Young-jin

**Description:**We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277894/

### Intuition versus Formalization: Some Implications of Incompleteness on Mathematical Thought

**Date:**August 1994

**Creator:**Lindman, Phillip A. (Phillip Anthony)

**Description:**This paper describes the tension between intuition about number theory and attempts to formalize it. I will first examine the root of the dilemma, Godel's First Incompleteness Theorem, which demonstrates that in any reasonable formalization of number theory, there will be independent statements. After proving the theorem, I consider some of its consequences on intuition, focusing on Freiling's "Dart Experiment" which is based on our usual notion of the real numbers as a line. This experiment gives an apparent refutation of the Axiom of Choice and the Continuum Hypothesis; however, it also leads to an equally apparent paradox. I conclude that such paradoxes are inevitable as the formalization of mathematics takes us further from our initial intuitions.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277970/

### A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces

**Date:**August 1995

**Creator:**Mahavier, William Ted

**Description:**We develop a numerical method for solving singular differential equations and demonstrate the method on a variety of singular problems including first order ordinary differential equations, second order ordinary differential equations which have variational principles, and one partial differential equation.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278653/

### Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative Anywhere

**Date:**December 1994

**Creator:**Lee, Jae S. (Jae Seung)

**Description:**In this paper, we study continuous functions with no finite or infinite one-sided derivative anywhere. In 1925, A. S. Beskovitch published an example of such a function. Since then we call them Beskovitch functions. This construction is presented in chapter 2, The example was simple enough to clear the doubts about the existence of Besicovitch functions. In 1932, S. Saks showed that the set of Besicovitch functions is only a meager set in C[0,1]. Thus the Baire category method for showing the existence of Besicovitch functions cannot be directly applied. A. P. Morse in 1938 constructed Besicovitch functions. In 1984, Maly revived the Baire category method by finding a non-empty compact subspace of (C[0,1], || • ||) with respect to which the set of Morse-Besicovitch functions is comeager.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278627/

### A Generalization of Sturmian Sequences: Combinatorial Structure and Transcendence

**Date:**August 1998

**Creator:**Risley, Rebecca N.

**Description:**We investigate a class of minimal sequences on a finite alphabet Ak = {1,2,...,k} having (k - 1)n + 1 distinct subwords of length n. These sequences, originally defined by P. Arnoux and G. Rauzy, are a natural generalization of binary Sturmian sequences. We describe two simple combinatorial algorithms for constructing characteristic Arnoux-Rauzy sequences (one of which is new even in the Sturmian case). Arnoux-Rauzy sequences arising from fixed points of primitive morphisms are characterized by an underlying periodic structure. We show that every Arnoux-Rauzy sequence contains arbitrarily large subwords of the form V^2+ε and, in the Sturmian case, arbitrarily large subwords of the form V^3+ε. Finally, we prove that an irrational number whose base b-digit expansion is an Arnoux-Rauzy sequence is transcendental.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278440/

### Descriptions and Computation of Ultrapowers in L(R)

**Date:**August 1995

**Creator:**Khafizov, Farid T.

**Description:**The results from this dissertation are an exact computation of ultrapowers by measures on cardinals $\aleph\sb{n},\ n\in w$, in $L(\IR$), and a proof that ordinals in $L(\IR$) below $\delta\sbsp{5}{1}$ represented by descriptions and the identity function with respect to sequences of measures are cardinals. An introduction to the subject with the basic definitions and well known facts is presented in chapter I. In chapter II, we define a class of measures on the $\aleph\sb{n},\ n\in\omega$, in $L(\IR$) and derive a formula for an exact computation of the ultrapowers of cardinals by these measures. In chapter III, we give the definitions of descriptions and the lowering operator. Then we prove that ordinals represented by descriptions and the identity function are cardinals. This result combined with the fact that every cardinal $<\delta\sbsp{5}{1}$ in $L(\IR$) is represented by a description (J1), gives a characterization of cardinals in $L(\IR$) below $\delta\sbsp{5}{1}. Concrete examples of formal computations are shown in chapter IV.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277867/

### Tensor Products of Banach Spaces

**Date:**August 1996

**Creator:**Ochoa, James Philip

**Description:**Tensor products of Banach Spaces are studied. An introduction to tensor products is given. Some results concerning the reciprocal Dunford-Pettis Property due to Emmanuele are presented. Pelczyriski's property (V) and (V)-sets are studied. It will be shown that if X and Y are Banach spaces with property (V) and every integral operator from X into Y* is compact, then the (V)-subsets of (X⊗F)* are weak* sequentially compact. This in turn will be used to prove some stronger convergence results for (V)-subsets of C(Ω,X)*.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278580/