You limited your search to:

  Partner: UNT Libraries
 Department: Department of Physics
 Collection: UNT Theses and Dissertations
Experimental Synchronization of Chaotic Attractors Using Control

Experimental Synchronization of Chaotic Attractors Using Control

Date: December 1994
Creator: Newell, Timothy C. (Timothy Charles)
Description: The focus of this thesis is to theoretically and experimentally investigate two new schemes of synchronizing chaotic attractors using chaotically operating diode resonators. The first method, called synchronization using control, is shown for the first time to experimentally synchronize dynamical systems. This method is an economical scheme which can be viably applied to low dimensional dynamical systems. The other, unidirectional coupling, is a straightforward means of synchronization which can be implemented in fast dynamical systems where timing is critical. Techniques developed in this work are of fundamental importance for future problems regarding high dimensional chaotic dynamical systems or arrays of mutually linked chaotically operating elements.
Contributing Partner: UNT Libraries
Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 3[less than or equal to]f[less than or equal to]35 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode

Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 3[less than or equal to]f[less than or equal to]35 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode

Date: August 1994
Creator: Wang, Henry F. S. (Henry Fu-Sen)
Description: The frequency dependence and temperature dependence of the complex dielectric constant of water is of great interest. The temperature dependence of the physical properties of water given in the literature, specific heat, thermal conductivity, electric conductivity, pH, etc. are compared to the a. c. (microwave) and d. c. conductivity of water with a variety of concentration of different substances such as HC1, NaCl, HaS04, etc. When each of these properties is plotted versus inverse absolute temperature, it can be seen that each sample shows "transition temperatures". In this work, Slater's perturbation equations for a resonant microwave cavity were used to analyze the experimental results for the microwave data.
Contributing Partner: UNT Libraries
Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

Date: August 1994
Creator: Sun, Hsueh-Li
Description: The charge state dependence of M-shell x-ray production cross sections of 67HO bombarded by 2-12 MeV carbon ions with and without K-vacancies are reported. The experiment was performed using an NEC 9SDH-2 tandem accelerator at the Ion Beam Modification and Analysis Laboratory of the University of North Texas. The high charge state carbon ions were produced by a post-accelerator stripping gas cell. Ultra-clean holmium targets were used in ion-atom collision to generate M-shell x rays at energies from 1.05 to 1.58 keV. The x-ray measurements were made with a windowless Si(Li) x-ray detector that was calibrated using radiative sources, particle induced x-ray emission (PIXE), and the atomic field bremsstrahlung (AFB) techniques.
Contributing Partner: UNT Libraries
Angular Dependence of the Stopping Processes and the Yields of Ion-induced Electron Emission from Channeled MEV Protons in <100> Silicon Foils

Angular Dependence of the Stopping Processes and the Yields of Ion-induced Electron Emission from Channeled MEV Protons in <100> Silicon Foils

Date: December 1993
Creator: Zhao, Zhiyong
Description: The present work reports the experimental evidence of anomalous energy loss, energy straggling, and the corresponding ion-induced electron emission yields of channeled protons in silicon.
Contributing Partner: UNT Libraries
On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

Date: August 1998
Creator: Stefancich, Marco
Description: The phenomenon of dynamically induced anomalous diffusion is both the classical and quantum kicked rotor is investigated in this dissertation. We discuss the capability of the quantum mechanical version of the system to reproduce for extended periods the corresponding classical chaotic behavior.
Contributing Partner: UNT Libraries
Steady-state and Dynamic Probe Characteristics in a Low-density Plasma

Steady-state and Dynamic Probe Characteristics in a Low-density Plasma

Date: December 1970
Creator: Bunting, William David
Description: The problem with which this investigation is concerned is that of determining the steady-state and dynamic characteristics of the admittance of a metallic probe immersed in a laboratory plasma which has the low electron densities and low electron temperatures characteristic of the ionospheric plasma. The problem is separated into three related topics: the design and production of the laboratory plasma, the measurement of the steady-state properties of dc and very low frequency probe admittance, and the study of transient ion sheath effects on radio frequency probe admittance.
Contributing Partner: UNT Libraries
Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Date: May 1999
Creator: Venezia, Vincent C.
Description: High-energy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the near-surface vacancy excess in MeV Si-implanted silicon both during implantation and post-implant annealing. Although previous investigations have identified a vacancy excess in MeV-implanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the free-vacancy supersaturation with the vacancies in clusters. Free-vacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of open-volume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during post-implant thermal processing.
Contributing Partner: UNT Libraries
Distribution of Nighttime F-region Molecular Ion Concentrations and 6300 Å Nightglow Morphology

Distribution of Nighttime F-region Molecular Ion Concentrations and 6300 Å Nightglow Morphology

Date: December 1970
Creator: Brasher, William Ernest, 1939-
Description: The purpose of this study is two-fold. The first is to determine the dependence of the molecular ion profiles on the various ionospheric and atmospheric parameters that affect their distributions. The second is to demonstrate the correlation of specific ionospheric parameters with 6300 Å nightglow intensity during periods of magnetically quiet and disturbed conditions.
Contributing Partner: UNT Libraries
Charge State Distributions in Molecular Dissociation

Charge State Distributions in Molecular Dissociation

Date: December 1998
Creator: Renfrow, Steven N. (Steven Neal)
Description: The present work provides charge state fractions that may be used to generate TEAMS relative sensitivity factors for impurities in semiconductor materials.
Contributing Partner: UNT Libraries
Anisotropic Relaxation Time for Solids with Ellipsoidal Fermi Surfaces

Anisotropic Relaxation Time for Solids with Ellipsoidal Fermi Surfaces

Date: May 1971
Creator: Fuchser, Troy Denrich
Description: Many solids have Fermi surfaces which are approximated as ellipsoids. A comprehensive solution for the magnetoconductivity of an ellipsoid is obtained which proves the existence of a relaxation time tensor which can be anisotropic and which is a function of energy only.
Contributing Partner: UNT Libraries