## You limited your search to:

**Partner:**UNT Libraries

**Department:**Department of Mathematics

**Collection:**UNT Theses and Dissertations

### Bounded, Finitely Additive, but Not Absolutely Continuous Set Functions

**Date:**May 1989

**Creator:**Gurney, David R. (David Robert)

**Description:**In leading up to the proof, methods for constructing fields and finitely additive set functions are introduced with an application involving the Tagaki function given as an example. Also, non-absolutely continuous set functions are constructed using Banach limits and maximal filters.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc332375/

### Applications of Graph Theory and Topology to Combinatorial Designs

**Date:**December 1988

**Creator:**Somporn Sutinuntopas

**Description:**This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331968/

### Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension

**Date:**May 1988

**Creator:**Brucks, Karen M. (Karen Marie), 1957-

**Description:**This dissertation is a study of the dynamics of one-dimensional unimodal maps and is mainly concerned with those maps which are trapezoidal. The trapezoidal function, f_e, is defined for eΣ(0,1/2) by f_e(x)=x/e for xΣ[0,e], f_e(x)=1 for xΣ(e,1-e), and f_e(x)=(1-x)/e for xΣ[1-e,1]. We study the symbolic dynamics of the kneading sequences and relate them to the analytic dynamics of these maps. Chapter one is an overview of the present theory of Metropolis, Stein, and Stein (MSS). In Chapter two a formula is given that counts the number of MSS sequences of length n. Next, the number of distinct primitive colorings of n beads with two colors, as counted by Gilbert and Riordan, is shown to equal the number of MSS sequences of length n. An algorithm is given that produces a bisection between these two quantities for each n. Lastly, the number of negative orbits of size n for the function f(z)=z^2-2, as counted by P.J. Myrberg, is shown to equal the number of MSS sequences of length n. For an MSS sequence P, let H_ϖ(P) be the unique common extension of the harmonics of P. In Chapter three it is proved that there is exactly one J(P)Σ[0,1] such that the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc332102/

### Operators on Continuous Function Spaces and Weak Precompactness

**Date:**August 1988

**Creator:**Abbott, Catherine Ann

**Description:**If T:C(H,X)-->Y is a bounded linear operator then there exists a unique weakly regular finitely additive set function m:-->L(X,Y**) so that T(f) = ∫Hfdm. In this paper, bounded linear operators on C(H,X) are studied in terms the measure given by this representation theorem. The first chapter provides a brief history of representation theorems of these classes of operators. In the second chapter the represenation theorem used in the remainder of the paper is presented. If T is a weakly compact operator on C(H,X) with representing measure m, then m(A) is a weakly compact operator for every Borel set A. Furthermore, m is strongly bounded. Analogous statements may be made for many interesting classes of operators. In chapter III, two classes of operators, weakly precompact and QSP, are studied. Examples are provided to show that if T is weakly precompact (QSP) then m(A) need not be weakly precompact (QSP), for every Borel set A. In addition, it will be shown that weakly precompact and GSP operators need not have strongly bounded representing measures. Sufficient conditions are provided which guarantee that a weakly precompact (QSP) operator has weakly precompact (QSP) values. A sufficient condition for a weakly precomact operator to be strongly ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331171/

### Existence of a Solution for a Wave Equation and an Elliptic Dirichlet Problem

**Date:**May 1988

**Creator:**Sumalee Unsurangsie

**Description:**In this paper we consider an existence of a solution for a nonlinear nonmonotone wave equation in [0,π]xR and an existence of a positive solution for a non-positone Dirichlet problem in a bounded subset of R^n.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331780/

### Dually Semimodular Consistent Lattices

**Date:**May 1988

**Creator:**Gragg, Karen E. (Karen Elizabeth)

**Description:**A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implies that a covers a ∧ b. L is consistent if for every join-irreducible j and every element x in L, the element x ∨ j is a join-irreducible in the upper interval [x,l]. In this paper, finite dually semimodular consistent lattices are investigated. Examples of these lattices are the lattices of subnormal subgroups of a finite group. In 1954, R. P. Dilworth proved that in a finite modular lattice, the number of elements covering exactly k elements is equal to the number of elements covered by exactly k elements. Here, it is established that if a finite dually semimodular consistent lattice has the same number of join-irreducibles as meet-irreducibles, then it is modular. Hence, a converse of Dilworth's theorem, in the case when k equals 1, is obtained for finite dually semimodular consistent lattices. Several combinatorial results are shown for finite consistent lattices similar to those already established for finite geometric lattices. The reach of an element x in a lattice L is the difference between the rank of x*, the join of x and all ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330641/

### A Comparative Study of Non Linear Conjugate Gradient Methods

**Date:**August 2013

**Creator:**Pathak, Subrat

**Description:**We study the development of nonlinear conjugate gradient methods, Fletcher Reeves (FR) and Polak Ribiere (PR). FR extends the linear conjugate gradient method to nonlinear functions by incorporating two changes, for the step length αk a line search is performed and replacing the residual, rk (rk=b-Axk) by the gradient of the nonlinear objective function. The PR method is equivalent to FR method for exact line searches and when the underlying quadratic function is strongly convex. The PR method is basically a variant of FR and primarily differs from it in the choice of the parameter βk. On applying the nonlinear Rosenbrock function to the MATLAB code for the FR and the PR algorithms we observe that the performance of PR method (k=29) is far better than the FR method (k=42). But, we observe that when the MATLAB codes are applied to general nonlinear functions, specifically functions whose minimum is a large negative number not close to zero and the iterates too are large values far off from zero the PR algorithm does not perform well. This problem with the PR method persists even if we run the PR algorithm for more iterations or with an initial guess closer to the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283864/

### Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank

**Date:**August 2013

**Creator:**Dahal, Rabin

**Description:**Let G be a Lie group acting on a homogeneous space G/K. The center of the universal enveloping algebra of the Lie algebra of G maps homomorphically into the center of the algebra of differential operators on G/K invariant under the action of G. In the case that G is a Jacobi Lie group of rank 2, we prove that this homomorphism is surjective and hence that the center of the invariant differential operator algebra is the image of the center of the universal enveloping algebra. This is an extension of work of Bringmann, Conley, and Richter in the rank 1case.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283833/

### Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

**Date:**December 1998

**Creator:**Richardson, Peter A. (Peter Adolph), 1955-

**Description:**In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278917/

### Minimality of the Special Linear Groups

**Date:**December 1997

**Creator:**Hayes, Diana Margaret

**Description:**Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear group SLn(F) with the usual topology induced by F is a minimal topological group. This is accomplished by first proving the minimality of the upper triangular group in SLn(F). The proof for the upper triangular group uses an induction argument on a chain of upper triangular subgroups and relies on general results for locally compact topological groups, quotient groups, and subgroups. Minimality of SLn(F) is concluded by appealing to the associated Lie group decomposition as the product of a compact group and an upper triangular group. We also prove the universal minimality of homeomorphism groups of one dimensional manifolds, and we give a new simple proof of the universal minimality of S∞.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279280/