You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Engineering Technology
 Collection: UNT Theses and Dissertations
Development of a Simplified Fracture Toughness Tool for Polymers

Development of a Simplified Fracture Toughness Tool for Polymers

Date: August 1997
Creator: Marnock, Patrick J. (Patrick Joseph)
Description: This thesis presents research toward the development of a simple inexpensive fracture toughness tool for polymeric materials. Experiments were conducted to test the specimen configuration and the fracture toughness tool against an established ASTM standard for polymer fracture toughness, D5045, and a commonly used four-point bend method. The materials used in this study were polycarbonate and high density polyethylene. Reductions in both the production time and the variability resulting from the preparation of the specimens were addressed through the use of specially designed fixtures. The effects from the razor cut depths used in the chevron notch were compared to the fracture toughness values obtained in order to determine the effect upon the validity of the fracture toughness.
Contributing Partner: UNT Libraries
Fracture Toughness Testing of Plastics under Various Environmental Conditions

Fracture Toughness Testing of Plastics under Various Environmental Conditions

Date: December 1997
Creator: Velpuri, Seshagirirao V.
Description: The primary objective of this study is to test the applicability to plastics of a fracture toughness testing tool developed for metals. The intent is to study pre-test conditioning of several plastic materials and the effect of the depth of the razor notch cut in the chevron notched fracture toughness test specimens. The study includes the careful preparation of samples followed by conditioning in various environments. Samples were subjected to laboratory air for a specific duration or to a controlled temperature-humidity condition as per the ASTM D1870. Some of the samples were subjected to vacuum conditioning under standard test specifications. Testing was conducted using the conventional three-point bend test as per ASTM D5045-95. ASTM E1304, which sets a standard for short rod and bar testing of metals and ceramics provides some basis for conducting chevron notched four-point bend tests to duplicate the toughness tool. Correlation of these results with the ASTM test samples is determined. The four-point bend test involves less specimen machining as well as time to perform the fracture toughness tests. This study of fracture toughness testing has potential for quality control as well as the fracture property determination.
Contributing Partner: UNT Libraries
A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications

A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications

Date: May 2009
Creator: John, Sween
Description: This thesis presents a novel ZnO-hydrogel based fluorescent colloidal semiconductor nanomaterial system for potential bio-medical applications such as bio-imaging, cancer detection and therapy. The preparation of ZnO nanoparticles and their surface modification to make a biocompatible material with enhanced optical properties is discussed. High quality ZnO nanoparticles with UV band edge emission are prepared using gas evaporation method. Semiconductor materials including ZnO are insoluble in water. Since biological applications require water soluble nanomaterials, ZnO nanoparticles are first dispersed in water by ball milling method, and their aqueous stability and fluorescence properties are enhanced by incorporating them in bio-compatible poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The optical properties of ZnO-hydrogel colloidal dispersion versus ZnO-Water dispersion were analyzed. The optical characterization using photoluminescence spectroscopy indicates approximately 10 times enhancement of fluorescence in ZnO-hydrogel colloidal system compared to ZnO-water system. Ultrafast time resolved measurement demonstrates dominant exciton recombination process in ZnO-hydrogel system compared to ZnO-water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. The surface modification of ZnO nanoparticles by hydrogel induce more scattering centers per unit area of cross-section, and hence increase the luminescence from the ZnO-gel samples due to multiple path excitations. Furthermore, surface modification of ...
Contributing Partner: UNT Libraries
A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices

A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices

Date: May 2008
Creator: Borden, Bradley W.
Description: The objective of this research is to investigate the use of laser direct writing to micro-pattern low loss passive optical channel waveguide devices using a new hybrid organic/inorganic polymer. Review of literature shows previous methods of optical waveguide device patterning as well as application of other non-polymer materials. System setup and design of the waveguide components are discussed. Results show that laser direct writing of the hybrid polymer produce single mode interconnects with a loss of less 1dB/cm.
Contributing Partner: UNT Libraries
Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.

Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.

Date: December 2007
Creator: Marks, Damian
Description: Pulse oximeters are used in operating rooms and recovery rooms as a monitoring device for oxygen in the respiratory system of the patient. The advantage of pulse oximeters over other methods of oxygen monitoring is that they are easy to use and they are non-invasive, which means it is not necessary break the skin to extract blood for information to be obtained. The standard for the measurement of partial pressure of CO2 and O2 is an arterial blood gas analysis (ABG). However routine monitoring using this method on a continuous basis is impractical since it is slow, painful and invasive. Measuring carbon dioxide is critical to preventing ailments such as carbon dioxide poisoning or hypoxia. The problem is, currently there is no known effective non-invasive method for accurately measuring carbon dioxide in the body to properly assess the adequacy of ventilation. The objective of this study was to experimentally use spectroscopy in the visible spectrum and the principles of operation of a pulse oximeter to incorporate a method of non-invasive real-time carbon dioxide monitoring that is as quick and easy to use.
Contributing Partner: UNT Libraries
Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station

Flow Accelerated Corrosion Experience at Comanche Peak Steam Electric Station

Date: May 2008
Creator: Nakka, Ravi Kumar
Description: Flow accelerated corrosion (FAC) is a major concern in the power industry as it causes thinning of the pipes by the dissolution of the passive oxide layer formed on the pipe surface. Present research deals with comparing the protection offered by the magnetite (Fe3O4) versus maghemite (γ-Fe2O3) phases thickness loss measurements. Fourier transform infrared spectroscopy (FTIR) is used in distinguishing these two elusive phases of iron oxides. Representative pipes are collected from high pressure steam extraction line of the secondary cycle of unit 2 of Comanche Peak Steam Electric Station (CPSES). Environmental scanning electron microscopy (ESEM) is used for morphological analysis. FTIR and X-ray diffraction (XRD) are used for phase analysis. Morphological analysis showed the presence of porous oxide surfaces with octahedral crystals, scallops and "chimney" like vents. FTIR revealed the predominance of maghemite at the most of the pipe sections. Results of thickness measurements indicate severe thickness loss at the bend areas (extrados) of the pipes.
Contributing Partner: UNT Libraries
Liquid Nitrogen Propulsion Systems for Automotive Applications: Calculation of Mechanical Efficiency of a Dual, Double-acting Piston Propulsion System

Liquid Nitrogen Propulsion Systems for Automotive Applications: Calculation of Mechanical Efficiency of a Dual, Double-acting Piston Propulsion System

Date: May 2008
Creator: North, Thomas B.
Description: A dual, double-acting propulsion system is analyzed to determine how efficiently it can convert the potential energy available from liquid nitrogen into useful work. The two double-acting pistons (high- and low-pressure) were analyzed by using a Matlab-Simulink computer simulation to determine their respective mechanical efficiencies. The flow circuit for the entire system was analyzed by using flow circuit analysis software to determine pressure losses throughout the system at the required mass flow rates. The results of the piston simulation indicate that the two pistons analyzed are very efficient at transferring energy into useful work. The flow circuit analysis shows that the system can adequately maintain the mass flow rate requirements of the pistons but also identifies components that have a significant impact on the performance of the system. The results of the analysis indicate that the nitrogen propulsion system meets the intended goals of its designers.
Contributing Partner: UNT Libraries
Radio frequency propagation differences through various transmissive materials.

Radio frequency propagation differences through various transmissive materials.

Date: December 2002
Creator: Ryan, Patrick L.
Description: The purpose of this research was to determine which of the commonly used wireless telecommunication site concealment materials has the least effect on signal potency. The tested materials were Tuff Span® fiberglass panels manufactured by Enduro Composite Systems, Lexan® XL-1 polycarbonate plastic manufactured by GE Corporation and Styrofoam™ polystyrene board manufactured by The Dow Chemical Company. Testing was conducted in a double electrically isolated copper mesh screen room at the University of North Texas Engineering Technology Building in Denton, Texas. Analysis of the data found no differences exist between the radio frequency transmissiveness of these products at broadband personal communication service frequencies. However, differences in the signal do exist with regards to the angle of incidence between the material and the transmitting antenna.
Contributing Partner: UNT Libraries
Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Dhoopati, Swathi
Description: A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Contributing Partner: UNT Libraries
Surface Plasmon Based Nanophotonic Optical Emitters

Surface Plasmon Based Nanophotonic Optical Emitters

Access: Use of this item is restricted to the UNT Community.
Date: December 2005
Creator: Vemuri, Padma Rekha
Description: Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST