You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Computer Science and Engineering
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Access: Use of this item is restricted to the UNT Community.
Date: May 2016
Creator: Joshi, Shital
Description: Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, ...
Contributing Partner: UNT Libraries
Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

Date: August 2015
Creator: Zhang, Ziming
Description: In order to run and manage resource-intensive high-performance applications, large-scale computing and storage platforms have been evolving rapidly in various domains in both academia and industry. The energy expenditure consumed to operate and maintain these cloud computing infrastructures is a major factor to influence the overall profit and efficiency for most cloud service providers. Moreover, considering the mitigation of environmental damage from excessive carbon dioxide emission, the amount of power consumed by enterprise-scale data centers should be constrained for protection of the environment.Generally speaking, there exists a trade-off between power consumption and application performance in large-scale computing systems and how to balance these two factors has become an important topic for researchers and engineers in cloud and HPC communities. Therefore, minimizing the power usage while satisfying the Service Level Agreements have become one of the most desirable objectives in cloud computing research and implementation. Since the fundamental feature of the cloud computing platform is hosting workloads with a variety of characteristics in a consolidated and on-demand manner, it is demanding to explore the inherent relationship between power usage and machine configurations. Subsequently, with an understanding of these inherent relationships, researchers are able to develop effective power management policies to optimize ...
Contributing Partner: UNT Libraries
Predictive Modeling for Persuasive Ambient Technology

Predictive Modeling for Persuasive Ambient Technology

Date: August 2015
Creator: Powell, Jason W
Description: Computer scientists are increasingly aware of the power of ubiquitous computing systems that can display information in and about the user's environment. One sub category of ubiquitous computing is persuasive ambient information systems that involve an informative display transitioning between the periphery and center of attention. The goal of this ambient technology is to produce a behavior change, implying that a display must be informative, unobtrusive, and persuasive. While a significant body of research exists on ambient technology, previous research has not fully explored the different measures to identify behavior change, evaluation techniques for linking design characteristics to visual effectiveness, nor the use of short-term goals to affect long-term behavior change. This study uses the unique context of noise-induced hearing loss (NIHL) among collegiate musicians to explore these issues through developing the MIHL Reduction Feedback System that collects real-time data, translates it into visuals for music classrooms, provides predictive outcomes for goalsetting persuasion, and provides statistical measures of behavior change.
Contributing Partner: UNT Libraries
Advanced Power Amplifiers Design for Modern Wireless Communication

Advanced Power Amplifiers Design for Modern Wireless Communication

Date: August 2015
Creator: Shao, Jin
Description: Modern wireless communication systems use spectrally efficient modulation schemes to reach high data rate transmission. These schemes are generally involved with signals with high peak-to-average power ratio (PAPR). Moreover, the development of next generation wireless communication systems requires the power amplifiers to operate over a wide frequency band or multiple frequency bands to support different applications. These wide-band and multi-band solutions will lead to reductions in both the size and cost of the whole system. This dissertation presents several advanced power amplifier solutions to provide wide-band and multi-band operations with efficiency improvement at power back-offs.
Contributing Partner: UNT Libraries
The Procedural Generation of Interesting Sokoban Levels

The Procedural Generation of Interesting Sokoban Levels

Date: May 2015
Creator: Taylor, Joshua
Description: As video games continue to become larger, more complex, and more costly to produce, research into methods to make game creation easier and faster becomes more valuable. One such research topic is procedural generation, which allows the computer to assist in the creation of content. This dissertation presents a new algorithm for the generation of Sokoban levels. Sokoban is a grid-based transport puzzle which is computational interesting due to being PSPACE-complete. Beyond just generating levels, the question of whether or not the levels created by this algorithm are interesting to human players is explored. A study was carried out comparing player attention while playing hand made levels versus their attention during procedurally generated levels. An auditory Stroop test was used to measure attention without disrupting play.
Contributing Partner: UNT Libraries
Space and Spectrum Engineered High Frequency Components and Circuits

Space and Spectrum Engineered High Frequency Components and Circuits

Access: Use of this item is restricted to the UNT Community.
Date: May 2015
Creator: Arigong, Bayaner
Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers ...
Contributing Partner: UNT Libraries
Trajectory Analytics

Trajectory Analytics

Date: May 2015
Creator: Santiteerakul, Wasana
Description: The numerous surveillance videos recorded by a single stationary wide-angle-view camera persuade the use of a moving point as the representation of each small-size object in wide video scene. The sequence of the positions of each moving point can be used to generate a trajectory containing both spatial and temporal information of object's movement. In this study, we investigate how the relationship between two trajectories can be used to recognize multi-agent interactions. For this purpose, we present a simple set of qualitative atomic disjoint trajectory-segment relations which can be utilized to represent the relationships between two trajectories. Given a pair of adjacent concurrent trajectories, we segment the trajectory pair to get the ordered sequence of related trajectory-segments. Each pair of corresponding trajectory-segments then is assigned a token associated with the trajectory-segment relation, which leads to the generation of a string called a pairwise trajectory-segment relationship sequence. From a group of pairwise trajectory-segment relationship sequences, we utilize an unsupervised learning algorithm, particularly the k-medians clustering, to detect interesting patterns that can be used to classify lower-level multi-agent activities. We evaluate the effectiveness of the proposed approach by comparing the activity classes predicted by our method to the actual classes from the ...
Contributing Partner: UNT Libraries
Modeling Epidemics on Structured Populations: Effects of Socio-demographic Characteristics and Immune Response Quality

Modeling Epidemics on Structured Populations: Effects of Socio-demographic Characteristics and Immune Response Quality

Date: August 2014
Creator: Reyes Silveyra, Jorge A.
Description: Epidemiologists engage in the study of the distribution and determinants of health-related states or events in human populations. Eventually, they will apply that study to prevent and control problems and contingencies associated with the health of the population. Due to the spread of new pathogens and the emergence of new bio-terrorism threats, it has become imperative to develop new and expand existing techniques to equip public health providers with robust tools to predict and control health-related crises. In this dissertation, I explore the effects caused in the disease dynamics by the differences in individuals’ physiology and social/behavioral characteristics. Multiple computational and mathematical models were developed to quantify the effect of those factors on spatial and temporal variations of the disease epidemics. I developed statistical methods to measure the effects caused in the outbreak dynamics by the incorporation of heterogeneous demographics and social interactions to the individuals of the population. Specifically, I studied the relationship between demographics and the physiological characteristics of an individual when preparing for an infectious disease epidemic.
Contributing Partner: UNT Libraries
Procedural Generation of Content for Online Role Playing Games

Procedural Generation of Content for Online Role Playing Games

Date: August 2014
Creator: Doran, Jonathon
Description: Video game players demand a volume of content far in excess of the ability of game designers to create it. For example, a single quest might take a week to develop and test, which means that companies such as Blizzard are spending millions of dollars each month on new content for their games. As a result, both players and developers are frustrated with the inability to meet the demand for new content. By generating content on-demand, it is possible to create custom content for each player based on player preferences. It is also possible to make use of the current world state during generation, something which cannot be done with current techniques. Using developers to create rules and assets for a content generator instead of creating content directly will lower development costs as well as reduce the development time for new game content to seconds rather than days. This work is part of the field of computational creativity, and involves the use of computers to create aesthetically pleasing game content, such as terrain, characters, and quests. I demonstrate agent-based terrain generation, and economic modeling of game spaces. I also demonstrate the autonomous generation of quests for online role playing games, ...
Contributing Partner: UNT Libraries
A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies

A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies

Date: August 2014
Creator: O’Neill II, Martin Joseph
Description: Mitigation response plans must be created to protect affected populations during biological emergencies resulting from the release of harmful biochemical substances. Medical countermeasures have been stockpiled by the federal government for such emergencies. However, it is the responsibility of local governments to maintain solid, functional plans to apply these countermeasures to the entire target population within short, mandated time frames. Further, vulnerabilities in the population may serve as barriers preventing certain individuals from participating in mitigation activities. Therefore, functional response plans must be capable of reaching vulnerable populations.Transportation vulnerability results from lack of access to transportation. Transportation vulnerable populations located too far from mitigation resources are at-risk of not being able to participate in mitigation activities. Quantification of these populations requires the development of computational methods to integrate spatial demographic data and transportation resource data from disparate sources into the context of planned mitigation efforts. Research described in this dissertation focuses on quantifying transportation vulnerable populations and maximizing participation in response efforts. Algorithms developed as part of this research are integrated into a computational framework to promote a transition from research and development to deployment and use by biological emergency planners.
Contributing Partner: UNT Libraries
A New Look at Retargetable Compilers

A New Look at Retargetable Compilers

Date: December 2014
Creator: Burke, Patrick William
Description: Consumers demand new and innovative personal computing devices every 2 years when their cellular phone service contracts are renewed. Yet, a 2 year development cycle for the concurrent development of both hardware and software is nearly impossible. As more components and features are added to the devices, maintaining this 2 year cycle with current tools will become commensurately harder. This dissertation delves into the feasibility of simplifying the development of such systems by employing heterogeneous systems on a chip in conjunction with a retargetable compiler such as the hybrid computer retargetable compiler (Hy-C). An example of a simple architecture description of sufficient detail for use with a retargetable compiler like Hy-C is provided. As a software engineer with 30 years of experience, I have witnessed numerous system failures. A plethora of software development paradigms and tools have been employed to prevent software errors, but none have been completely successful. Much discussion centers on software development in the military contracting market, as that is my background. The dissertation reviews those tools, as well as some existing retargetable compilers, in an attempt to determine how those errors occurred and how a system like Hy-C could assist in reducing future software errors. In ...
Contributing Partner: UNT Libraries
Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Pérez-Rosas, Verónica
Description: This research is concerned with the identification of sentiment in multimodal content. This is of particular interest given the increasing presence of subjective multimodal content on the web and other sources, which contains a rich and vast source of people's opinions, feelings, and experiences. Despite the need for tools that can identify opinions in the presence of diverse modalities, most of current methods for sentiment analysis are designed for textual data only, and few attempts have been made to address this problem. The dissertation investigates techniques for augmenting linguistic representations with acoustic, visual, and physiological features. The potential benefits of using these modalities include linguistic disambiguation, visual grounding, and the integration of information about people's internal states. The main goal of this work is to build computational resources and tools that allow sentiment analysis to be applied to multimodal data. This thesis makes three important contributions. First, it shows that modalities such as audio, video, and physiological data can be successfully used to improve existing linguistic representations for sentiment analysis. We present a method that integrates linguistic features with features extracted from these modalities. Features are derived from verbal statements, audiovisual recordings, thermal recordings, and physiological sensors signals. The resulting ...
Contributing Partner: UNT Libraries
Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Date: December 2014
Creator: Fazeen, Mohamed & Issadeen, Mohamed
Description: Mobile phones are one of the essential parts of modern life. Making a phone call is not the main purpose of a smart phone anymore, but merely one of many other features. Online social networking, chatting, short messaging, web browsing, navigating, and photography are some of the other features users enjoy in modern smartphones, most of which are provided by mobile apps. However, with this advancement, many security vulnerabilities have opened up in these devices. Malicious apps are a major threat for modern smartphones. According to Symantec Corp., by the middle of 2013, about 273,000 Android malware apps were identified. It is a complex issue to protect everyday users of mobile devices from the attacks of technologically competent hackers, illegitimate users, trolls, and eavesdroppers. This dissertation emphasizes the concept of intention identification. Then it looks into ways to utilize this intention identification concept to enforce security in a mobile phone platform. For instance, a battery monitoring app requiring SMS permissions indicates suspicious intention as battery monitoring usually does not need SMS permissions. Intention could be either the user's intention or the intention of an app. These intentions can be identified using their behavior or by using their source code. Regardless ...
Contributing Partner: UNT Libraries
Trajectories As a Unifying Cross Domain Feature for Surveillance Systems

Trajectories As a Unifying Cross Domain Feature for Surveillance Systems

Date: December 2014
Creator: Wan, Yiwen
Description: Manual video analysis is apparently a tedious task. An efficient solution is of highly importance to automate the process and to assist operators. A major goal of video analysis is understanding and recognizing human activities captured by surveillance cameras, a very challenging problem; the activities can be either individual or interactional among multiple objects. It involves extraction of relevant spatial and temporal information from visual images. Most video analytics systems are constrained by specific environmental situations. Different domains may require different specific knowledge to express characteristics of interesting events. Spatial-temporal trajectories have been utilized to capture motion characteristics of activities. The focus of this dissertation is on how trajectories are utilized in assist in developing video analytic system in the context of surveillance. The research as reported in this dissertation begins real-time highway traffic monitoring and dynamic traffic pattern analysis and in the end generalize the knowledge to event and activity analysis in a broader context. The main contributions are: the use of the graph-theoretic dominant set approach to the classification of traffic trajectories; the ability to first partition the trajectory clusters using entry and exit point awareness to significantly improve the clustering effectiveness and to reduce the computational time ...
Contributing Partner: UNT Libraries
Uncertainty Evaluation in Large-scale Dynamical Systems: Theory and Applications

Uncertainty Evaluation in Large-scale Dynamical Systems: Theory and Applications

Date: December 2014
Creator: Zhou, Yi
Description: Significant research efforts have been devoted to large-scale dynamical systems, with the aim of understanding their complicated behaviors and managing their responses in real-time. One pivotal technological obstacle in this process is the existence of uncertainty. Although many of these large-scale dynamical systems function well in the design stage, they may easily fail when operating in realistic environment, where environmental uncertainties modulate system dynamics and complicate real-time predication and management tasks. This dissertation aims to develop systematic methodologies to evaluate the performance of large-scale dynamical systems under uncertainty, as a step toward real-time decision support. Two uncertainty evaluation approaches are pursued: the analytical approach and the effective simulation approach. The analytical approach abstracts the dynamics of original stochastic systems, and develops tractable analysis (e.g., jump-linear analysis) for the approximated systems. Despite the potential bias introduced in the approximation process, the analytical approach provides rich insights valuable for evaluating and managing the performance of large-scale dynamical systems under uncertainty. When a system’s complexity and scale are beyond tractable analysis, the effective simulation approach becomes very useful. The effective simulation approach aims to use a few smartly selected simulations to quickly evaluate a complex system’s statistical performance. This approach was originally developed ...
Contributing Partner: UNT Libraries
Monitoring Dengue Outbreaks Using Online Data

Monitoring Dengue Outbreaks Using Online Data

Date: May 2014
Creator: Chartree, Jedsada
Description: Internet technology has affected humans' lives in many disciplines. The search engine is one of the most important Internet tools in that it allows people to search for what they want. Search queries entered in a web search engine can be used to predict dengue incidence. This vector borne disease causes severe illness and kills a large number of people every year. This dissertation utilizes the capabilities of search queries related to dengue and climate to forecast the number of dengue cases. Several machine learning techniques are applied for data analysis, including Multiple Linear Regression, Artificial Neural Networks, and the Seasonal Autoregressive Integrated Moving Average. Predictive models produced from these machine learning methods are measured for their performance to find which technique generates the best model for dengue prediction. The results of experiments presented in this dissertation indicate that search query data related to dengue and climate can be used to forecast the number of dengue cases. The performance measurement of predictive models shows that Artificial Neural Networks outperform the others. These results will help public health officials in planning to deal with the outbreaks.
Contributing Partner: UNT Libraries
Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

Date: May 2014
Creator: Okobiah, Oghenekarho
Description: The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design space exploration and optimization. This dissertation addresses several issues of metamodeling based nanoelectronic based AMS design exploration. A surrogate modeling technique which uses geostatistical based Kriging prediction methods in creating metamodels is proposed. Kriging prediction techniques take into account the correlation effects between input parameters for performance point prediction. We propose the use of Kriging to utilize this property for the accurate modeling of process variation effects of designs in the deep nanometer region. Different Kriging methods have been explored for this work such as simple and ordinary Kriging. We also propose another metamodeling technique Kriging-Bootstrapped Neural Network that combines the accuracy and process variation awareness of Kriging with artificial neural network models for ultra-fast and accurate process aware metamodeling design. ...
Contributing Partner: UNT Libraries
Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

Date: December 2013
Creator: Ayeh, Eric
Description: This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over the unconstrained energy approach. Second, it considers the detection of random signals in noisy measurements and evaluates the performance of eigenvalue-based signal detectors. Due to their computational simplicity, robustness and performance, these detectors have recently received a lot of attention. When the observed random signal is correlated, several researchers claim that the performance of eigenvalue-based detectors exceeds that of the classical energy detector. However, such claims fail to consider the fact that when the signal is correlated, the optimal detector is the estimator-correlator and not the energy detector. In this dissertation, through theoretical analyses and Monte Carlo simulations, eigenvalue-based detectors ...
Contributing Partner: UNT Libraries
Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Date: August 2013
Creator: Nawarathna, Ruwan D.
Description: Recent reports suggest that measuring the objective quality is very essential towards the success of colonoscopy. Several quality indicators (i.e. metrics) proposed in recent studies are implemented in software systems that compute real-time quality scores for routine screening colonoscopy. Most quality metrics are derived based on various temporal events occurred during the colonoscopy procedure. The location of the phase boundary between the insertion and the withdrawal phases and the amount of circumferential inspection are two such important temporal events. These two temporal events can be determined by analyzing various camera motions of the colonoscope. This dissertation put forward a novel method to estimate X, Y and Z directional motions of the colonoscope using motion vector templates. Since abnormalities of a WCE or a colonoscopy video can be found in a small number of frames (around 5% out of total frames), it is very helpful if a computer system can decide whether a frame has any mucosal abnormalities. Also, the number of detected abnormal lesions during a procedure is used as a quality indicator. Majority of the existing abnormal detection methods focus on detecting only one type of abnormality or the overall accuracies are somewhat low if the method tries to ...
Contributing Partner: UNT Libraries
Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

Date: August 2013
Creator: Kumara, Muthukudage Jayantha
Description: The effectiveness of colonoscopy depends on the quality of the inspection of the colon. There was no automated measurement method to evaluate the quality of the inspection. This thesis addresses this issue by investigating an automated post-procedure quality measurement technique and proposing a novel approach automatically deciding a percentage of stool areas in images of digitized colonoscopy video files. It involves the classification of image pixels based on their color features using a new method of planes on RGB (red, green and blue) color space. The limitation of post-procedure quality measurement is that quality measurements are available long after the procedure was done and the patient was released. A better approach is to inform any sub-optimal inspection immediately so that the endoscopist can improve the quality in real-time during the procedure. This thesis also proposes an extension to post-procedure method to detect stool, bite-block, and blood regions in real-time using color features in HSV color space. These three objects play a major role in quality measurements in colonoscopy. The proposed method partitions very large positive examples of each of these objects into a number of groups. These groups are formed by taking intersection of positive examples with a hyper plane. ...
Contributing Partner: UNT Libraries
Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

Date: May 2013
Creator: Sinha, Ravi Som
Description: Making computers automatically find the appropriate meaning of words in context is an interesting problem that has proven to be one of the most challenging tasks in natural language processing (NLP). Widespread potential applications of a possible solution to the problem could be envisaged in several NLP tasks such as text simplification, language learning, machine translation, query expansion, information retrieval and text summarization. Ambiguity of words has always been a challenge in these applications, and the traditional endeavor to solve the problem of this ambiguity, namely doing word sense disambiguation using resources like WordNet, has been fraught with debate about the feasibility of the granularity that exists in WordNet senses. The recent trend has therefore been to move away from enforcing any given lexical resource upon automated systems from which to pick potential candidate senses,and to instead encourage them to pick and choose their own resources. Given a sentence with a target ambiguous word, an alternative solution consists of picking potential candidate substitutes for the target, filtering the list of the candidates to a much shorter list using various heuristics, and trying to match these system predictions against a human generated gold standard, with a view to ensuring that the ...
Contributing Partner: UNT Libraries
Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Date: May 2013
Creator: Zheng, Geng
Description: This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP ...
Contributing Partner: UNT Libraries
Extrapolating Subjectivity Research to Other Languages

Extrapolating Subjectivity Research to Other Languages

Date: May 2013
Creator: Banea, Carmen
Description: Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like understanding to machines. As much of our language represents a form of self expression, capturing thoughts, beliefs, evaluations, opinions, and emotions which are not available for scrutiny by an outside observer, in the field of natural language, research involving these aspects has crystallized under the name of subjectivity and sentiment analysis. While subjectivity classification labels text as either subjective or objective, sentiment classification further divides subjective text into either positive, negative or neutral. In this thesis, I investigate techniques of generating tools and resources for subjectivity analysis that do not rely on an existing natural language processing infrastructure in a given language. This constraint is motivated by the fact that the vast majority of human languages are scarce from an electronic point of view: they lack basic tools such as part-of-speech taggers, parsers, or basic resources such as electronic text, annotated corpora or lexica. This severely limits the ...
Contributing Partner: UNT Libraries
Source and Channel Coding Strategies for Wireless Sensor Networks

Source and Channel Coding Strategies for Wireless Sensor Networks

Date: December 2012
Creator: Li, Li
Description: In this dissertation, I focus on source coding techniques as well as channel coding techniques. I addressed the challenges in WSN by developing (1) a new source coding strategy for erasure channels that has better distortion performance compared to MDC; (2) a new cooperative channel coding strategy for multiple access channels that has better channel outage performances compared to MIMO; (3) a new source-channel cooperation strategy to accomplish source-to-fusion center communication that reduces system distortion and improves outage performance. First, I draw a parallel between the 2x2 MDC scheme and the Alamouti's space time block coding (STBC) scheme and observe the commonality in their mathematical models. This commonality allows us to observe the duality between the two diversity techniques. Making use of this duality, I develop an MDC scheme with pairwise complex correlating transform. Theoretically, I show that MDC scheme results in: 1) complete elimination of the estimation error when only one descriptor is received; 2) greater efficiency in recovering the stronger descriptor (with larger variance) from the weaker descriptor; and 3) improved performance in terms of minimized distortion as the quantization error gets reduced. Experiments are also performed on real images to demonstrate these benefits. Second, I present a ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST