You limited your search to:

  Access Rights: Public
  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Collection: UNT Theses and Dissertations
Exploring Analog and Digital Design Using the Open-Source Electric VLSI Design System

Exploring Analog and Digital Design Using the Open-Source Electric VLSI Design System

Date: 2016-5
Creator: Aluru, Gunasekhar
Description: The design of VLSI electronic circuits can be achieved at many different abstraction levels starting from system behavior to the most detailed, physical layout level. As the number of transistors in VLSI circuits is increasing, the complexity of the design is also increasing, and it is now beyond human ability to manage. Hence CAD (Computer Aided design) or EDA (Electronic Design Automation) tools are involved in the design. EDA or CAD tools automate the design, verification and testing of these VLSI circuits. In today’s market, there are many EDA tools available. However, they are very expensive and require high-performance platforms. One of the key challenges today is to select appropriate CAD or EDA tools which are open-source for academic purposes. This thesis provides a detailed examination of an open-source EDA tool called Electric VLSI Design system. An excellent and efficient CAD tool useful for students and teachers to implement ideas by modifying the source code, Electric fulfills these requirements. This thesis' primary objective is to explain the Electric software features and architecture and to provide various digital and analog designs that are implemented by this software for educational purposes. Since the choice of an EDA tool is based on the ...
Contributing Partner: UNT Libraries
An Empirical Study of How Novice Programmers Use the Web

An Empirical Study of How Novice Programmers Use the Web

Date: 2016-5
Creator: Tula, Naveen
Description: Students often use the web as a source of help for problems that they encounter on programming assignments.In this work, we seek to understand how students use the web to search for help on their assignments.We used a mixed methods approach with 344 students who complete a survey and 41 students who participate in a focus group meetings and helped in recording data about their search habits.The survey reveals data about student reported search habits while the focus group uses a web browser plug-in to record actual search patterns.We examine the results collectively and as broken down by class year.Survey results show that at least 2/3 of the students from each class year rely on search engines to locate resources for help with their programming bugs in at least half of their assignments;search habits vary by class year;and the value of different types of resources such as tutorials and forums varies by class year.Focus group results exposes the high frequency web sites used by the students in solving their programming assignments.
Contributing Partner: UNT Libraries
Simulink(R) Based Design and Implementation of a Solar Power Based Mobile Charger

Simulink(R) Based Design and Implementation of a Solar Power Based Mobile Charger

Date: 2016-5
Creator: Mukka, Manoj Kumar
Description: Electrical energy is used at approximately the rate of 15 Terawatts world-wide. Generating this much energy has become a primary concern for all nations. There are many ways of generating energy among which the most commonly used are non-renewable and will extinct much sooner than expected. Very active research is going on both to increase the use of renewable energy sources and to use the available energy with more efficiency. Among these sources, solar energy is being considered as the most abundant and has received high attention. The mobile phone has become one of the basic needs of modern life, with almost every human being having one.Individually a mobile phone consumes little power but collectively this becomes very large. This consideration motivated the research undertaken in this masters thesis. The objective of this thesis is to design a model for solar power based charging circuits for mobile phone using Simulink(R). This thesis explains a design procedure of solar power based mobile charger circuit using Simulink(R) which includes the models for the photo-voltaic array, maximum power point tracker, pulse width modulator, DC-DC converter and a battery.The first part of the thesis concentrates on electron level behavior of a solar cell, its ...
Contributing Partner: UNT Libraries
Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

Date: December 2015
Creator: Dahal, Ashok
Description: There are several types of disorders that affect our colon’s ability to function properly such as colorectal cancer, ulcerative colitis, diverticulitis, irritable bowel syndrome and colonic polyps. Automatic detection of these diseases would inform the endoscopist of possible sub-optimal inspection during the colonoscopy procedure as well as save time during post-procedure evaluation. But existing systems only detects few of those disorders like colonic polyps. In this dissertation, we address the automatic detection of another important disorder called ulcerative colitis. We propose a novel texture feature extraction technique to detect the severity of ulcerative colitis in block, image, and video levels. We also enhance the current informative frame filtering methods by detecting water and bubble frames using our proposed technique. Our feature extraction algorithm based on accumulation of pixel value difference provides better accuracy at faster speed than the existing methods making it highly suitable for real-time systems. We also propose a hybrid approach in which our feature method is combined with existing feature method(s) to provide even better accuracy. We extend the block and image level detection method to video level severity score calculation and shot segmentation. Also, the proposed novel feature extraction method can detect water and bubble frames ...
Contributing Partner: UNT Libraries
Integrity Verification of Applications on Radium Architecture

Integrity Verification of Applications on Radium Architecture

Date: August 2015
Creator: Tarigopula, Mohan Krishna
Description: Trusted Computing capability has become ubiquitous these days, and it is being widely deployed into consumer devices as well as enterprise platforms. As the number of threats is increasing at an exponential rate, it is becoming a daunting task to secure the systems against them. In this context, the software integrity measurement at runtime with the support of trusted platforms can be a better security strategy. Trusted Computing devices like TPM secure the evidence of a breach or an attack. These devices remain tamper proof if the hardware platform is physically secured. This type of trusted security is crucial for forensic analysis in the aftermath of a breach. The advantages of trusted platforms can be further leveraged if they can be used wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such architecture, which is built on the strength of TPM. RADIUM provides an asynchronous root of trust to overcome the TOC condition of DRTM. Even though the underlying architecture is trusted, attacks can still compromise applications during runtime by exploiting their vulnerabilities. I propose an application-level integrity measurement solution that fits into RADIUM, to expand the trusted computing capability to the application layer. This is based on the concept ...
Contributing Partner: UNT Libraries
Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Date: August 2015
Creator: Bristow, Kelly H.
Description: Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature ...
Contributing Partner: UNT Libraries
Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

Date: August 2015
Creator: Zhang, Ziming
Description: In order to run and manage resource-intensive high-performance applications, large-scale computing and storage platforms have been evolving rapidly in various domains in both academia and industry. The energy expenditure consumed to operate and maintain these cloud computing infrastructures is a major factor to influence the overall profit and efficiency for most cloud service providers. Moreover, considering the mitigation of environmental damage from excessive carbon dioxide emission, the amount of power consumed by enterprise-scale data centers should be constrained for protection of the environment.Generally speaking, there exists a trade-off between power consumption and application performance in large-scale computing systems and how to balance these two factors has become an important topic for researchers and engineers in cloud and HPC communities. Therefore, minimizing the power usage while satisfying the Service Level Agreements have become one of the most desirable objectives in cloud computing research and implementation. Since the fundamental feature of the cloud computing platform is hosting workloads with a variety of characteristics in a consolidated and on-demand manner, it is demanding to explore the inherent relationship between power usage and machine configurations. Subsequently, with an understanding of these inherent relationships, researchers are able to develop effective power management policies to optimize ...
Contributing Partner: UNT Libraries
Automatic Removal of Complex Shadows From Indoor Videos

Automatic Removal of Complex Shadows From Indoor Videos

Date: August 2015
Creator: Mohapatra, Deepankar
Description: Shadows in indoor scenarios are usually characterized with multiple light sources that produce complex shadow patterns of a single object. Without removing shadow, the foreground object tends to be erroneously segmented. The inconsistent hue and intensity of shadows make automatic removal a challenging task. In this thesis, a dynamic thresholding and transfer learning-based method for removing shadows is proposed. The method suppresses light shadows with a dynamically computed threshold and removes dark shadows using an online learning strategy that is built upon a base classifier trained with manually annotated examples and refined with the automatically identified examples in the new videos. Experimental results demonstrate that despite variation of lighting conditions in videos our proposed method is able to adapt to the videos and remove shadows effectively. The sensitivity of shadow detection changes slightly with different confidence levels used in example selection for classifier retraining and high confidence level usually yields better performance with less retraining iterations.
Contributing Partner: UNT Libraries
Predictive Modeling for Persuasive Ambient Technology

Predictive Modeling for Persuasive Ambient Technology

Date: August 2015
Creator: Powell, Jason W
Description: Computer scientists are increasingly aware of the power of ubiquitous computing systems that can display information in and about the user's environment. One sub category of ubiquitous computing is persuasive ambient information systems that involve an informative display transitioning between the periphery and center of attention. The goal of this ambient technology is to produce a behavior change, implying that a display must be informative, unobtrusive, and persuasive. While a significant body of research exists on ambient technology, previous research has not fully explored the different measures to identify behavior change, evaluation techniques for linking design characteristics to visual effectiveness, nor the use of short-term goals to affect long-term behavior change. This study uses the unique context of noise-induced hearing loss (NIHL) among collegiate musicians to explore these issues through developing the MIHL Reduction Feedback System that collects real-time data, translates it into visuals for music classrooms, provides predictive outcomes for goalsetting persuasion, and provides statistical measures of behavior change.
Contributing Partner: UNT Libraries
Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Date: August 2015
Creator: Liang, Yiheng
Description: Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST