You limited your search to:

  Access Rights: Public
  Partner: UNT Libraries
 Degree Discipline: Biochemistry
 Collection: UNT Theses and Dissertations
Development of Enabling Technologies to Visualize the Plant Lipidome

Development of Enabling Technologies to Visualize the Plant Lipidome

Date: August 2013
Creator: Horn, Patrick J.
Description: Improvements in mass spectrometry (MS)-based strategies for characterizing the plant lipidome through quantitative and qualitative approaches such as shotgun lipidomics have substantially enhanced our understanding of the structural diversity and functional complexity of plant lipids. However, most of these approaches require chemical extractions that result in the loss of the original spatial context and cellular compartmentation for these compounds. To address this current limitation, several technologies were developed to visualize lipids in situ with detailed chemical information. A subcellular visualization approach, direct organelle MS, was developed for directly sampling and analyzing the triacylglycerol contents within purified lipid droplets (LDs) at the level of a single LD. Sampling of single LDs demonstrated seed lipid droplet-to-droplet variability in triacylglycerol (TAG) composition suggesting that there may be substantial variation in the intracellular packaging process for neutral lipids in plant tissues. A cellular and tissue visualization approach, MS imaging, was implemented and enhanced for visualizing the lipid distributions in oilseeds. In mature cotton seed embryos distributions of storage lipids (TAGs) and their phosphatidylcholine (PCs) precursors were distribution heterogeneous between the cotyledons and embryonic axis raising new questions about extent and regulation of oilseed heterogeneity. Extension of this methodology provides an avenue for understanding metabolism ...
Contributing Partner: UNT Libraries
Studies of the Mechanism of Plasma Cholesterol Esterification in Aged Rats

Studies of the Mechanism of Plasma Cholesterol Esterification in Aged Rats

Date: December 1989
Creator: Lee, Sun Min
Description: The study was performed to determine factors influencing the esteriflcation of plasma cholesterol in young and aged rats. The distribution of LCAT activity was determined following gel nitration chromatography and ultracentrifugation of whole plasma respectively. When rat plasma was fractionated on a Bio-Gel A-5 Mcolumn, LCAT activity was found to be associated with the HDL fraction. A similar result was observed upon 24 hr density gradient ultracentrifugation of the plasma. However, following prolonged 40 hr preparative ultracentrifugation, the majority of the LCAT activity was displaced into the lipoprotein-free infranatant fraction (d> 1.225 g/ml). The dissociation of LCAT from the HDL fraction occured to a smaller extent in aged rat plasma than in young rat plasma. Plasma incubation (37°C) experiments followed by the isolation of lipoproteins and the subsequent analysis of their cholesterol content revealed that in vitro net esteriflcation of free cholesterol (FC) by LCAT as well as the fractional ufilization of HDL-FC as substrate were lower in the plasma of the aged animal as compared to that of the young animal despite the fact that the total pool of FC was higher in the former. The net transfer of FC from lower density lipoproteins (d<1.07 g/ml) to HDL provided ...
Contributing Partner: UNT Libraries
Manipulating Sucrose Proton Symporters to Understand Phloem Loading

Manipulating Sucrose Proton Symporters to Understand Phloem Loading

Date: August 2013
Creator: Dasgupta, Kasturi
Description: Phloem vascular tissues transport sugars synthesized by photosynthesis in mature leaves by a process called phloem loading in source tissues and unloading in sink tissues. Phloem loading in source leaves is catalyzed by Suc/H+ symporters (SUTs) which are energized by proton motive force. In Arabidopsis the principal and perhaps exclusive SUT catalyzing phloem loading is AtSUC2. In mutant plants harboring a T-DNA insertion in each of the functional SUT-family members, only Atsuc2 mutants demonstrate overtly debilitated phloem transport. Analysis of a mutant allele (Atsuc2-4) of AtSUC2 with a T-DNA insertion in the second intron showed severely stunted phenotype similar to previously analyzed Atsuc2 null alleles. However unlike previous alleles Atsuc2-4 produced viable seeds. Analysis of phloem specific promoters showed that promoter expression was regulated by Suc concentration. Unlike AtSUC2p, heterologous promoter CoYMVp was not repressed under high Suc conc. Further analysis was conducted using CoYMVp to test the capacity of diverse clades in SUT-gene family for transferring Suc in planta in Atsuc2 - / - mutant background. AtSUC1 and ZmSUT1 from maize complemented Atsuc2 mutant plants to the highest level compared to all other transporters. Over-expression of the above SUTs in phloem showed enhanced Suc loading and transport, but against ...
Contributing Partner: UNT Libraries
Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase: Identification, Purification and Biochemical Characterization of a Unique Acyltransferase

Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase: Identification, Purification and Biochemical Characterization of a Unique Acyltransferase

Date: December 1998
Creator: McAndrew, Rosemary S. (Rosemary Smith)
Description: N-Acylphosphatidylethanoiamine (NAPE) is synthesized in the microsomes of cotton seedlings by a mechanism that is possibly unique to plants, the ATP-, Ca2+-, and CoA-independent acylation ofphosphatidylethanolamine (PE) with unesterified free fatty acids (FFAs), catalyzed by NAPE synthase. A photoreactive free fatty acid analogue, 12-[(4- azidosalicyl)amino]dodecanoic acid (ASD), and its 125I-labeled derivative acted as substrates for the NAPE synthase enzyme.
Contributing Partner: UNT Libraries
N-Acylethanolamines and Plant Phospholipase D

N-Acylethanolamines and Plant Phospholipase D

Date: December 1998
Creator: Brown, Shea Austin
Description: Recently, three distinct isoforms of phospholipase D (PLD) were identified in Arabidopsis thaliana. PLD α represents the well-known form found in plants, while PLD β and γ have been only recently discovered (Pappan et al., 1997b; Qin et al., 1997). These isoforms differ in substrate selectivity and cofactors required for activity. Here, I report that PLD β and γ isoforms were active toward N-acylphosphatidylethanolamine (NAPE), but PLD α was not. The ability of PLD β and γ to hydrolyze NAPE marks a key difference from PLD α. N-acylethanolamines (NAE), the hydrolytic products of NAPE by PLD β and γ, inhibited PLD α from castor bean and cabbage. Inhibition of PLD α by NAE was dose-dependent and inversely proportional to acyl chain length and degree of unsaturation. Enzyme kinetic analysis suggested non-competitive inhibition of PLD α by NAE 14:0. In addition, a 1.2-kb tobacco (Nicotiana tabacum L.) cDNA fragment was isolated that possessed a 74% amino acid identity to Arabidopsis PLD β indicating that this isoform is expressed in tobacco cells. Collectively, these results provide evidence for NAE producing PLD activities and suggest a possible regulatory role for NAE with respect to PLD α.
Contributing Partner: UNT Libraries
A Study of the Intrinsic Fluorescence of O-Acetyl-L-Serine Sulfhydrylase-A from Salmonella typhimurium

A Study of the Intrinsic Fluorescence of O-Acetyl-L-Serine Sulfhydrylase-A from Salmonella typhimurium

Date: May 1993
Creator: McClure, G. David (George David)
Description: O-Acetyl-L-serine sulfhydrylase-A (OASS-A) forms acetate and L-cysteine from O-acetyl-L-serine (OAS) and sulfide. One molecule of the cofactor pyridoxal 5'- phosphate (PLP) is bound in each holoenzyme protomer.
Contributing Partner: UNT Libraries
Autophosphorylation and Autoactivation of an S6/H4 Kinase Isolated From Human Placenta

Autophosphorylation and Autoactivation of an S6/H4 Kinase Isolated From Human Placenta

Date: May 1994
Creator: Dennis, Patrick B. (Patrick Brian)
Description: A number of protein kinases have been shown to undergo autophosphorylation, but few have demonstrated a coordinate increase or decrease in enzymatic activity as a result. Described here is a novel S6 kinase isolated from human placenta which autoactivates through autophosphorylation in vitro. This S6/H4 kinase, purified in an inactive state, was shown to be a protein of Mr of 60,000 as estimated by SDS-PAGE and could catalyze the phosphorylation of the synthetic peptide S6-21, the histone H4, and myelin basic protein. Mild digestion of the inactive S6/H4 kinase with trypsin was necessary, but not sufficient, to activate the kinase fully
Contributing Partner: UNT Libraries
Fumarate Activation and Kinetic Solvent Isotope Effects as Probes of the NAD-Malic Enzyme Reaction

Fumarate Activation and Kinetic Solvent Isotope Effects as Probes of the NAD-Malic Enzyme Reaction

Date: December 1992
Creator: Lai, Chung-Jeng
Description: The kinetic mechanism of activation of the NAD-malic enzyme by fumarate and the transition state structure for the oxidation malate for the NAD-malic enzyme reaction have been studied. Fumarate exerts its activating effect by decreasing the off-rate for malate from the E:Mg:malate and E:Mg:NAD:malate complexes. The activation by fumarate results in a decrease in K_imalate and an increase in V/K_malate by about 2-fold, while the maximum velocity remains constant. A discrimination exists between active and activator sites for the binding of dicarboxylic acids. Activation by fumarate is proposed to have physiologic importance in the parasite. The hydride transfer transition state for the NAD-malic enzyme reaction is concerted with respect to solvent isotope sensitive and hydride transfer steps. Two protons are involved in the solvent isotope sensitive step, one with a normal fractionation factor, another with an inverse fractionation factor. A structure for the transition state for hydride transfer in the NAD-malic enzyme reaction is proposed.
Contributing Partner: UNT Libraries
Desensitized Phosphofructokinase from Ascaris suum: A Study in Noncooperative Allostery

Desensitized Phosphofructokinase from Ascaris suum: A Study in Noncooperative Allostery

Date: May 1993
Creator: Payne, Marvin A.
Description: The studies described in this dissertation examine the effects of F-2,6-P2 and AMP or phosphorylation on the kinetic mechanism of d-PFK. The effect of varied pH on the activation by F-2,6-P2 is also described.
Contributing Partner: UNT Libraries
Kinetic and Chemical Mechanism of O-Acetylserine Sulfhydrylase-B from Salmonella Typhimurium

Kinetic and Chemical Mechanism of O-Acetylserine Sulfhydrylase-B from Salmonella Typhimurium

Date: August 1993
Creator: Tai, Chia-Hui
Description: Initial velocity studies of O-acetylserine sulfhydrylase-B (OASS-B) from Salmonella typhimurium using both natural and alternative substrates suggest a Bi Bi ping pong kinetic mechanism with double substrate competitive inhibition. The ping pong mechanism is corroborated by a qualitative and quantitative analysis of product and dead-end inhibition. Product inhibition by acetate is S-parabolic noncompetitive, indication of a combination of acetate with E followed by OAS. These data suggest some randomness to the OASS-B kinetic mechanism. The pH dependence of kinetic parameters was determined in order to obtain information on the acid-base chemical mechanism for the OASS-B reaction. A mechanism is proposed in which an enzyme general base accepts a proton from α-amine of O-acetylserine, while a second enzyme general base acts by polarizing the acetyl carbonyl assisting in the β-elimination of the acetyl group of O-acetylserine. The ε-amine of the active site lysine acts as a general base to abstract the α-proton in the β-elimination of acetate. At the end of the first half reaction the ε-amine of the active site lysine that formed the internal Schiff base and the general base are protonated. The resulting α-aminoacrylate intermediate undergoes a Michael addition with HS‾ and the active site lysine donates its ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST