## You limited your search to:

**Partner:**UNT Libraries

**Resource Type:**Thesis or Dissertation

**Degree Discipline:**Mathematics

### An exploration of the word2vec algorithm: Creating a vector representation of a language vocabulary that encodes meaning and usage patterns in the vector space structure.

**Date:**May 2016

**Creator:**Le, Thu Anh

**Description:**This thesis is an exloration and exposition of a highly efficient shallow neural network algorithm called word2vec, which was developed by T. Mikolov et al. in order to create vector representations of a language vocabulary such that information about the meaning and usage of the vocabulary words is encoded in the vector space structure. Chapter 1 introduces natural language processing, vector representations of language vocabularies, and the word2vec algorithm. Chapter 2 reviews the basic mathematical theory of deterministic convex optimization. Chapter 3 provides background on some concepts from computer science that are used in the word2vec algorithm: Huffman trees, neural networks, and binary cross-entropy. Chapter 4 provides a detailed discussion of the word2vec algorithm itself and includes a discussion of continuous bag of words, skip-gram, hierarchical softmax, and negative sampling. Finally, Chapter 5 explores some applications of vector representations: word categorization, analogy completion, and language translation assistance.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849728/

### Continuous Combinatorics of a Lattice Graph in the Cantor Space

**Date:**May 2016

**Creator:**Krohne, Edward William

**Description:**We present a novel theorem of Borel Combinatorics that sheds light on the types of continuous functions that can be defined on the Cantor space. We specifically consider the part X=F(2ᴳ) from the Cantor space, where the group G is the additive group of integer pairs ℤ². That is, X is the set of aperiodic {0,1} labelings of the two-dimensional infinite lattice graph. We give X the Bernoulli shift action, and this action induces a graph on X in which each connected component is again a two-dimensional lattice graph. It is folklore that no continuous (indeed, Borel) function provides a two-coloring of the graph on X, despite the fact that any finite subgraph of X is bipartite. Our main result offers a much more complete analysis of continuous functions on this space. We construct a countable collection of finite graphs, each consisting of twelve "tiles", such that for any property P (such as "two-coloring") that is locally recognizable in the proper sense, a continuous function with property P exists on X if and only if a function with a corresponding property P' exists on one of the graphs in the collection. We present the theorem, and give several applications.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849680/

### The Relative Complexity of Various Classification Problems among Compact Metric Spaces

**Date:**May 2016

**Creator:**Chang, Cheng

**Description:**In this thesis, we discuss three main projects which are related to Polish groups and their actions on standard Borel spaces. In the first part, we show that the complexity of the classification problem of continua is Borel bireducible to a universal orbit equivalence relation induce by a Polish group on a standard Borel space. In the second part, we compare the relative complexity of various types of classification problems concerning subspaces of [0,1]^n for all natural number n. In the last chapter, we give a topological characterization theorem for the class of locally compact two-sided invariant non-Archimedean Polish groups. Using this theorem, we show the non-existence of a universal group and the existence of a surjectively universal group in the class.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849626/

### Optimal Strategies for Stopping Near the Top of a Sequence

**Date:**December 2015

**Creator:**Islas Anguiano, Jose Angel

**Description:**In Chapter 1 the classical secretary problem is introduced. Chapters 2 and 3 are variations of this problem. Chapter 2, discusses the problem of maximizing the probability of stopping with one of the two highest values in a Bernoulli random walk with arbitrary parameter p and finite time horizon n. The optimal strategy (continue or stop) depends on a sequence of threshold values (critical probabilities) which has an oscillating pattern. Several properties of this sequence have been proved by Dr. Allaart. Further properties have been recently proved. In Chapter 3, a gambler will observe a finite sequence of continuous random variables. After he observes a value he must decide to stop or continue taking observations. He can play two different games A) Win at the maximum or B) Win within a proportion of the maximum. In the first section the sequence to be observed is independent. It is shown that for each n>1, theoptimal win probability in game A is bounded below by (1-1/n)^{n-1}. It is accomplished by reducing the problem to that of choosing the maximum of a special sequence of two-valued random variables and applying the sum-the-odds theorem of Bruss (2000). Secondly, it is assumed the sequence is ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc822812/

### Reduced Ideals and Periodic Sequences in Pure Cubic Fields

**Date:**August 2015

**Creator:**Jacobs, G. Tony

**Description:**The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in the rings and sub-rings of integers in quadratic fields with periodicity in continued fraction expansions of quadratic numbers. In this thesis, we develop cubic analogs for several infrastructure theorems. We work in the field K=Q(), where 3=m for some square-free integer m, not congruent to ±1, modulo 9. First, we generalize the definition of a reduced ideal so that it applies to K, or to any number field. Then we show that K has only finitely many reduced ideals, and provide an algorithm for listing them. Next, we define a sequence based on the number alpha that is periodic and corresponds to the finite set of reduced principal ideals in K. Using this rudimentary infrastructure, we are able to establish results about fundamental units and reduced ideals for some classes of pure cubic fields. We also introduce an application to Diophantine approximation, in which we present a 2-dimensional analog of the Lagrange value of a badly approximable number, and calculate some examples.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804842/

### Trees and Ordinal Indices in C(k) Spaces for K Countable Compact

**Date:**August 2015

**Creator:**Dahal, Koshal Raj

**Description:**In the dissertation we study the C(K) spaces focusing on the case when K is countable compact and more specifically, the structure of C() spaces for < ω1 via special type of trees that they contain. The dissertation is composed of three major sections. In the first section we give a detailed proof of the theorem of Bessaga and Pelczynski on the isomorphic classification of C() spaces. In due time, we describe the standard bases for C(ω) and prove that the bases are monotone. In the second section we consider the lattice-trees introduced by Bourgain, Rosenthal and Schechtman in C() spaces, and define rerooting and restriction of trees. The last section is devoted to the main results. We give some lower estimates of the ordinal-indices in C(ω). We prove that if the tree in C(ω) has large order with small constant then each function in the root must have infinitely many big coordinates. Along the way we deduce some upper estimates for c0 and C(ω), and give a simple proof of Cambern's result that the Banach-Mazur distance between c0 and c = C(ω) is equal to 3.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804883/

### Restricting Invariants and Arrangements of Finite Complex Reflection Groups

**Date:**August 2015

**Creator:**Berardinelli, Angela

**Description:**Suppose that G is a finite, unitary reflection group acting on a complex vector space V and X is a subspace of V. Define N to be the setwise stabilizer of X in G, Z to be the pointwise stabilizer, and C=N/Z. Then restriction defines a homomorphism from the algebra of G-invariant polynomial functions on V to the algebra of C-invariant functions on X. In my thesis, I extend earlier work by Douglass and Röhrle for Coxeter groups to the case where G is a complex reflection group of type G(r,p,n) in the notation of Shephard and Todd and X is in the lattice of the reflection arrangement of G. The main result characterizes when the restriction mapping is surjective in terms of the exponents of G and C and their reflection arrangements.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804919/

### Contributions to Descriptive Set Theory

**Date:**August 2015

**Creator:**Atmai, Rachid

**Description:**In this dissertation we study closure properties of pointclasses, scales on sets of reals and the models L[T2n], which are very natural canonical inner models of ZFC. We first characterize projective-like hierarchies by their associated ordinals. This solves a conjecture of Steel and a conjecture of Kechris, Solovay, and Steel. The solution to the first conjecture allows us in particular to reprove a strong partition property result on the ordinal of a Steel pointclass and derive a new boundedness principle which could be useful in the study of the cardinal structure of L(R). We then develop new methods which produce lightface scales on certain sets of reals. The methods are inspired by Jackson’s proof of the Kechris-Martin theorem. We then generalize the Kechris-Martin Theorem to all the Π12n+1 pointclasses using Jackson’s theory of descriptions. This in turns allows us to characterize the sets of reals of a certain initial segment of the models L[T2n]. We then use this characterization and the generalization of Kechris-Martin theorem to show that the L[T2n] are unique. This generalizes previous work of Hjorth. We then characterize the L[T2n] in term of inner models theory, showing that they actually are constructible models over direct limit of ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804953/

### Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation

**Date:**August 2014

**Creator:**Montgomery, Jason W.

**Description:**A steepest descent method is constructed for the general setting of a linear differential equation paired with uniqueness-inducing conditions which might yield a generally overdetermined system. The method differs from traditional steepest descent methods by considering the conditions when defining the corresponding Sobolev space. The descent method converges to the unique solution to the differential equation so that change in condition values is minimal. The system has a solution if and only if the first iteration of steepest descent satisfies the system. The finite analogue of the descent method is applied to example problems involving finite difference equations. The well-posed problems include a singular ordinary differential equation and Laplace’s equation, each paired with respective Dirichlet-type conditions. The overdetermined problems include a first-order nonsingular ordinary differential equation with Dirichlet-type conditions and the wave equation with both Dirichlet and Neumann conditions. The method is applied in an investigation of the Tricomi equation, a long-studied equation which acts as a prototype of mixed partial differential equations and has application in transonic flow. The Tricomi equation has been studied for at least ninety years, yet necessary and sufficient conditions for existence and uniqueness of solutions on an arbitrary mixed domain remain unknown. The domains ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc699977/

### Hermitian Jacobi Forms and Congruences

**Date:**August 2014

**Creator:**Senadheera, Jayantha

**Description:**In this thesis, we introduce a new space of Hermitian Jacobi forms, and we determine its structure. As an application, we study heat cycles of Hermitian Jacobi forms, and we establish a criterion for the existence of U(p) congruences of Hermitian Jacobi forms. We demonstrate that criterion with some explicit examples. Finally, in the appendix we give tables of Fourier series coefficients of several Hermitian Jacobi forms.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc700083/

### A Comparison of Velocities Computed by Two-Dimensional Potential Theory and Velocities Measured in the Vicinity of an Airfoil

**Date:**June 1947

**Creator:**Copp, George

**Description:**In treating the motion of a fluid mathematically, it is convenient to make some simplifying assumptions. The assumptions which are made will be justifiable if they save long and laborious computations in practical problems, and if the predicted results agree closely enough with experimental results for practical use. In dealing with the flow of air about an airfoil, at subsonic speeds, the fluid will be considered as a homogeneous, incompressible, inviscid fluid.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc699611/

### Some Effects of the War Upon the Mathematics Curriculum and the Motivating Forces at Work as Reflected in the Dallas City Schools

**Date:**August 1945

**Creator:**Smith, R. N.

**Description:**"To discuss the effect all this war activity has had upon the Dallas Schools and to voice a protest against those who seek to discredit mathematics and at the same time to contribute a readable thesis upon the subject is largely the purpose of this study." --leaf 2

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc699532/

### Linear Operators

**Date:**December 1975

**Creator:**Malhotra, Vijay Kumar

**Description:**This paper is a study of linear operators defined on normed linear spaces. A basic knowledge of set theory and vector spaces is assumed, and all spaces considered have real vector spaces. The first chapter is a general introduction that contains assumed definitions and theorems. Included in this chapter is material concerning linear functionals, continuity, and boundedness. The second chapter contains the proofs of three fundamental theorems of linear analysis: the Open Mapping Theorem, the Hahn-Banach Theorem, and the Uniform Boundedness Principle. The third chapter is concerned with applying some of the results established in earlier chapters. In particular, the concepts of compact operators and Schauder bases are introduced, and a proof that an operator is compact if and only if its adjoint is compact is included. This chapter concludes with a proof of an important application of the Open Mapping Theorem, namely, the Closed Graph Theorem.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663614/

### Equivalent Sets and Cardinal Numbers

**Date:**December 1975

**Creator:**Hsueh, Shawing

**Description:**The purpose of this thesis is to study the equivalence relation between sets A and B: A o B if and only if there exists a one to one function f from A onto B. In Chapter I, some of the fundamental properties of the equivalence relation are derived. Certain basic results on countable and uncountable sets are given. In Chapter II, a number of theorems on equivalent sets are proved and Dedekind's definitions of finite and infinite are compared with the ordinary concepts of finite and infinite. The Bernstein Theorem is studied and three different proofs of it are given. In Chapter III, the concept of cardinal number is introduced by means of two axioms of A. Tarski, and some fundamental theorems on cardinal arithmetic are proved.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663009/

### The Use of Chebyshev Polynomials in Numerical Analysis

**Date:**December 1975

**Creator:**Forisha, Donnie R.

**Description:**The purpose of this paper is to investigate the nature and practical uses of Chebyshev polynomials. Chapter I gives recognition to mathematicians responsible for studies in this area. Chapter II enumerates several mathematical situations in which the polynomials naturally arise and suggests reasons for the pursuance of their study. Chapter III includes: Chebyshev polynomials as related to "best" polynomial approximation, Chebyshev series, and methods of producing polynomial approximations to continuous functions. Chapter IV discusses the use of Chebyshev polynomials to solve certain differential equations and Chebyshev-Gauss quadrature.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663496/

### Duals and Weak Completeness in Certain Sequence Spaces

**Date:**August 1980

**Creator:**Leavelle, Tommy L. (Tommy Lee)

**Description:**In this paper the weak completeness of certain sequence spaces is examined. In particular, we show that each of the sequence spaces c0 and 9, 1 < p < c, is a Banach space. A Riesz representation for the dual space of each of these sequence spaces is given. A Riesz representation theorem for Hilbert space is also proven. In the third chapter we conclude that any reflexive space is weakly (sequentially) complete. We give 01 as an example of a non-reflexive space that is weakly complete. Two examples, c0 and YJ, are given of spaces that fail to be weakly complete.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504338/

### Interpolation and Approximation

**Date:**May 1977

**Creator:**Lal, Ram

**Description:**In this paper, there are three chapters. The first chapter discusses interpolation. Here a theorem about the uniqueness of the solution to the general interpolation problem is proven. Then the problem of how to represent this unique solution is discussed. Finally, the error involved in the interpolation and the convergence of the interpolation process is developed. In the second chapter a theorem about the uniform approximation to continuous functions is proven. Then the best approximation and the least squares approximation (a special case of best approximation) is discussed. In the third chapter orthogonal polynomials as discussed as well as bounded linear functionals in Hilbert spaces, interpolation and approximation and approximation in Hilbert space.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504571/

### Complete Ordered Fields

**Date:**August 1977

**Creator:**Arnold, Thompson Sharon

**Description:**The purpose of this thesis is to study the concept of completeness in an ordered field. Several conditions which are necessary and sufficient for completeness in an ordered field are examined. In Chapter I the definitions of a field and an ordered field are presented and several properties of fields and ordered fields are noted. Chapter II defines an Archimedean field and presents several conditions equivalent to the Archimedean property. Definitions of a complete ordered field (in terms of a least upper bound) and the set of real numbers are also stated. Chapter III presents eight conditions which are equivalent to completeness in an ordered field. These conditions include the concepts of nested intervals, Dedekind cuts, bounded monotonic sequences, convergent subsequences, open coverings, cluster points, Cauchy sequences, and continuous functions.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504449/

### The Wallman Spaces and Compactifications

**Date:**December 1976

**Creator:**Liu, Wei-kong

**Description:**If X is a topological space and Y is a ring of closed sets, then a necessary and sufficient condition for the Wallman space W(X,F) to be a compactification of X is that X be T1 andYF separating. A necessary and sufficient condition for a Wallman compactification to be Hausdoff is that F be a normal base. As a result, not all T, compactifications can be of Wallman type. One point and finite Hausdorff compactifications are of Wallman type.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504392/

### Integrability, Measurability, and Summability of Certain Set Functions

**Date:**December 1977

**Creator:**Dawson, Dan Paul

**Description:**The purpose of this paper is to investigate the integrability, measurability, and summability of certain set functions. The paper is divided into four chapters. The first chapter contains basic definitions and preliminary remarks about set functions and absolute continuity. In Chapter i, the integrability of bounded set functions is investigated. The chapter culminates with a theorem that characterizes the transmission of the integrability of a real function of n bounded set functions. In Chapter III, measurability is defined and a characterization of the transmission of measurability by a function of n variables is provided, In Chapter IV, summability is defined and the summability of set functions is investigated, Included is a characterization of the transmission of summability by a function of n variables.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504032/

### Hyperspaces

**Date:**December 1976

**Creator:**Voas, Charles H.

**Description:**This paper is an exposition of the theory of the hyperspaces 2^X and C(X) of a topological space X. These spaces are obtained from X by collecting the nonempty closed and nonempty closed connected subsets respectively, and are topologized by the Vietoris topology. The paper is organized in terms of increasing specialization of spaces, beginning with T1 spaces and proceeding through compact spaces, compact metric spaces and metric continua. Several basic techniques in hyperspace theory are discussed, and these techniques are applied to elucidate the topological structure of hyperspaces.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc503983/

### Valuations on Fields

**Date:**May 1977

**Creator:**Walker, Catherine A.

**Description:**This thesis investigates some properties of valuations on fields. Basic definitions and theorems assumed are stated in Capter I. Chapter II introduces the concept of a valuation on a field. Real valuations and non-Archimedean valuations are presented. Chapter III generalizes non-Archimedean valuations. Examples are described in Chapters I and II. A result is the theorem stating that a real valuation of a field K is non-Archimedean if and only if $(a+b) < max4# (a), (b) for all a and b in K. Chapter III generally defines a non-Archimedean valuation as an ordered abelian group. Real non-Archimedean valuations are either discrete or nondiscrete. Chapter III shows that every valuation ring identifies a non-Archimedean valuation and every non-Archimedean valuation identifies a valuation ring.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504040/

### Subdirectly Irreducible Semigroups

**Date:**December 1978

**Creator:**Winton, Richard Alan

**Description:**Definition 1.1. The ordered pair (S,*) is a semi-group iff S is a set and * is an associative binary operation (multiplication) on S. Notation. A semigroup (S,*) will ordinarily be referred to by the set S, with the multiplication understood. In other words, if (a,b)e SX , then *[(a,b)] = a*b = ab. The proof of the following proposition is found on p. 4 of Introduction to Semigroups, by Mario Petrich. Proposition 1.2. Every semigroup S satisfies the general associative law.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504365/

### Fundamental Issues in Support Vector Machines

**Date:**May 2014

**Creator:**McWhorter, Samuel P.

**Description:**This dissertation considers certain issues in support vector machines (SVMs), including a description of their construction, aspects of certain exponential kernels used in some SVMs, and a presentation of an algorithm that computes the necessary elements of their operation with proof of convergence. In its first section, this dissertation provides a reasonably complete description of SVMs and their theoretical basis, along with a few motivating examples and counterexamples. This section may be used as an accessible, stand-alone introduction to the subject of SVMs for the advanced undergraduate. Its second section provides a proof of the positive-definiteness of a certain useful function here called E and dened as follows: Let V be a complex inner product space. Let N be a function that maps a vector from V to its norm. Let p be a real number between 0 and 2 inclusive and for any in V , let ( be N() raised to the p-th power. Finally, let a be a positive real number. Then E() is exp(()). Although the result is not new (other proofs are known but involve deep properties of stochastic processes) this proof is accessible to advanced undergraduates with a decent grasp of linear algebra. Its ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc500155/