## You limited your search to:

Partner: UNT Libraries
Degree Discipline: Mathematics
Results 1 - 50 of 327
|   |
Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation
A steepest descent method is constructed for the general setting of a linear differential equation paired with uniqueness-inducing conditions which might yield a generally overdetermined system. The method differs from traditional steepest descent methods by considering the conditions when defining the corresponding Sobolev space. The descent method converges to the unique solution to the differential equation so that change in condition values is minimal. The system has a solution if and only if the first iteration of steepest descent satisfies the system. The finite analogue of the descent method is applied to example problems involving finite difference equations. The well-posed problems include a singular ordinary differential equation and Laplace’s equation, each paired with respective Dirichlet-type conditions. The overdetermined problems include a first-order nonsingular ordinary differential equation with Dirichlet-type conditions and the wave equation with both Dirichlet and Neumann conditions. The method is applied in an investigation of the Tricomi equation, a long-studied equation which acts as a prototype of mixed partial differential equations and has application in transonic flow. The Tricomi equation has been studied for at least ninety years, yet necessary and sufficient conditions for existence and uniqueness of solutions on an arbitrary mixed domain remain unknown. The domains of interest are rectangular mixed domains. A new type of conditions is introduced. Ladder conditions take the uncommon approach of specifying information on the interior of a mixed domain. Specifically, function values are specified on the parabolic portion of a mixed domain. The remaining conditions are specified on the boundary. A conjecture is posed and states that ladder conditions are necessary and sufficient for existence and uniqueness of a solution to the Tricomi equation. Numerical experiments, produced by application of the descent method, provide strong evidence in support of the conjecture. Ladder conditions allow for a continuous deformation from Dirichlet conditions to initial-boundary value conditions. Such a deformation is applied to a class of Tricomi-type equations which transition from degenerate elliptic to degenerate hyperbolic. A conjecture is posed and states that each problem is uniquely solvable and the solutions vary continuously as the differential equation and corresponding conditions vary continuously. If the conjecture holds true, the result will provide a method of unifying elliptic Dirichlet problems and hyperbolic initial-boundary value problem. Numerical evidence in support of the conjecture is presented. digital.library.unt.edu/ark:/67531/metadc699977/
Hermitian Jacobi Forms and Congruences
In this thesis, we introduce a new space of Hermitian Jacobi forms, and we determine its structure. As an application, we study heat cycles of Hermitian Jacobi forms, and we establish a criterion for the existence of U(p) congruences of Hermitian Jacobi forms. We demonstrate that criterion with some explicit examples. Finally, in the appendix we give tables of Fourier series coefficients of several Hermitian Jacobi forms. digital.library.unt.edu/ark:/67531/metadc700083/
Fundamental Issues in Support Vector Machines
This dissertation considers certain issues in support vector machines (SVMs), including a description of their construction, aspects of certain exponential kernels used in some SVMs, and a presentation of an algorithm that computes the necessary elements of their operation with proof of convergence. In its first section, this dissertation provides a reasonably complete description of SVMs and their theoretical basis, along with a few motivating examples and counterexamples. This section may be used as an accessible, stand-alone introduction to the subject of SVMs for the advanced undergraduate. Its second section provides a proof of the positive-definiteness of a certain useful function here called E and dened as follows: Let V be a complex inner product space. Let N be a function that maps a vector from V to its norm. Let p be a real number between 0 and 2 inclusive and for any in V , let ( be N() raised to the p-th power. Finally, let a be a positive real number. Then E() is exp(()). Although the result is not new (other proofs are known but involve deep properties of stochastic processes) this proof is accessible to advanced undergraduates with a decent grasp of linear algebra. Its final section presents an algorithm by Dr. Kallman (preprint), based on earlier Russian work by B.F. Mitchell, V.F Demyanov, and V.N. Malozemov, and proves its convergence. The section also discusses briefly architectural features of the algorithm expected to result in practical speed increases. digital.library.unt.edu/ark:/67531/metadc500155/
Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models
We consider the problem of maximum likelihood estimation of logistic sinusoidal regression models and develop some asymptotic theory including the consistency and joint rates of convergence for the maximum likelihood estimators. The key techniques build upon a synthesis of the results of Walker and Song and Li for the widely studied sinusoidal regression model and on making a connection to a result of Radchenko. Monte Carlo simulations are also presented to demonstrate the finite-sample performance of the estimators digital.library.unt.edu/ark:/67531/metadc407796/
Hausdorff, Packing and Capacity Dimensions
In this thesis, Hausdorff, packing and capacity dimensions are studied by evaluating sets in the Euclidean space R^. Also the lower entropy dimension is calculated for some Cantor sets. By incorporating technics of Munroe and of Saint Raymond and Tricot, outer measures are created. A Vitali covering theorem for packings is proved. Methods (by Taylor and Tricot, Kahane and Salem, and Schweiger) for determining the Hausdorff and capacity dimensions of sets using probability measures are discussed and extended. The packing pre-measure and measure are shown to be scaled after an affine transformation. A Cantor set constructed by L.D. Pitt is shown to be dimensionless using methods developed in this thesis. A Cantor set is constructed for which all four dimensions are different. Graph directed constructions (compositions of similitudes follow a path in a directed graph) used by Mauldin and Willjams are presented. Mauldin and Williams calculate the Hausdorff dimension, or, of the object of a graph directed construction and show that if the graph is strongly connected, then the a—Hausdorff measure is positive and finite. Similar results will be shown for the packing dimension and the packing measure. When the graph is strongly connected, there is a constant so that the constant times the Hausdorff measure is greater than or equal to the packing measure when a subset of the realization is evaluated. Self—affine Sierpinski carpets, which have been analyzed by McMullen with respect to their Hausdorff dimension and capacity dimension, are analyzed with respect to their packing dimension. Conditions under which the Hausdorff measure of the construction object is positive and finite are given. digital.library.unt.edu/ark:/67531/metadc330990/
The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors
We show that the maximum size of a geometry of rank n excluding the (q + 2)-point line, the 3-wheel W_3, and the 3-whirl W^3 as minor is (n - 1)q + 1, and geometries of maximum size are parallel connections of (q + 1)-point lines. We show that the maximum size of a geometry of rank n excluding the 5-point line, the 4-wheel W_4, and the 4-whirl W^4 as minors is 6n - 5, for n ≥ 3. Examples of geometries having rank n and size 6n - 5 include parallel connections of the geometries V_19 and PG(2,3). digital.library.unt.edu/ark:/67531/metadc330849/
Minimization of a Nonlinear Elasticity Functional Using Steepest Descent
The method of steepest descent is used to minimize typical functionals from elasticity. digital.library.unt.edu/ark:/67531/metadc331296/
Bounded, Finitely Additive, but Not Absolutely Continuous Set Functions
In leading up to the proof, methods for constructing fields and finitely additive set functions are introduced with an application involving the Tagaki function given as an example. Also, non-absolutely continuous set functions are constructed using Banach limits and maximal filters. digital.library.unt.edu/ark:/67531/metadc332375/
Applications of Graph Theory and Topology to Combinatorial Designs
This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, then it must have a 1-factor which contains A. The second part of the dissertation is concerned with determining if two designs are isomorphic. Here the v-set is any group G and translation by any element in G gives a design automorphism. Given a design B and its difference family D, two topological spaces, B and D, are constructed. We give topological conditions which imply that a design isomorphism is a group isomorphism. digital.library.unt.edu/ark:/67531/metadc331968/
Operators on Continuous Function Spaces and Weak Precompactness
If T:C(H,X)-->Y is a bounded linear operator then there exists a unique weakly regular finitely additive set function m:-->L(X,Y**) so that T(f) = ∫Hfdm. In this paper, bounded linear operators on C(H,X) are studied in terms the measure given by this representation theorem. The first chapter provides a brief history of representation theorems of these classes of operators. In the second chapter the represenation theorem used in the remainder of the paper is presented. If T is a weakly compact operator on C(H,X) with representing measure m, then m(A) is a weakly compact operator for every Borel set A. Furthermore, m is strongly bounded. Analogous statements may be made for many interesting classes of operators. In chapter III, two classes of operators, weakly precompact and QSP, are studied. Examples are provided to show that if T is weakly precompact (QSP) then m(A) need not be weakly precompact (QSP), for every Borel set A. In addition, it will be shown that weakly precompact and GSP operators need not have strongly bounded representing measures. Sufficient conditions are provided which guarantee that a weakly precompact (QSP) operator has weakly precompact (QSP) values. A sufficient condition for a weakly precomact operator to be strongly bounded is given. In chapter IV, weakly precompact subsets of L1(μ,X) are examined. For a Banach space X whose dual has the Radon-Nikodym property, it is shown that the weakly precompact subsets of L1(μ,X) are exactly the uniformly integrable subsets of L1(μ,X). Furthermore, it is shown that this characterization does not hold in Banach spaces X for which X* does not have the weak Radon-Nikodym property. digital.library.unt.edu/ark:/67531/metadc331171/
Dually Semimodular Consistent Lattices
A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implies that a covers a ∧ b. L is consistent if for every join-irreducible j and every element x in L, the element x ∨ j is a join-irreducible in the upper interval [x,l]. In this paper, finite dually semimodular consistent lattices are investigated. Examples of these lattices are the lattices of subnormal subgroups of a finite group. In 1954, R. P. Dilworth proved that in a finite modular lattice, the number of elements covering exactly k elements is equal to the number of elements covered by exactly k elements. Here, it is established that if a finite dually semimodular consistent lattice has the same number of join-irreducibles as meet-irreducibles, then it is modular. Hence, a converse of Dilworth's theorem, in the case when k equals 1, is obtained for finite dually semimodular consistent lattices. Several combinatorial results are shown for finite consistent lattices similar to those already established for finite geometric lattices. The reach of an element x in a lattice L is the difference between the rank of x*, the join of x and all the elements covering x, and the rank of x; the maximum reach of all elements in L is the reach of L. Sharp lower bounds for the total number of elements and the number of elements of a given reach in a semimodular consistent lattice given the rank, the reach, and the number of join-irreducibles are found. Extremal lattices attaining these bounds are described. Similar results are then obtained for finite dually semimodular consistent lattices. digital.library.unt.edu/ark:/67531/metadc330641/
Existence of a Solution for a Wave Equation and an Elliptic Dirichlet Problem
In this paper we consider an existence of a solution for a nonlinear nonmonotone wave equation in [0,π]xR and an existence of a positive solution for a non-positone Dirichlet problem in a bounded subset of R^n. digital.library.unt.edu/ark:/67531/metadc331780/
Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension
This dissertation is a study of the dynamics of one-dimensional unimodal maps and is mainly concerned with those maps which are trapezoidal. The trapezoidal function, f_e, is defined for eΣ(0,1/2) by f_e(x)=x/e for xΣ[0,e], f_e(x)=1 for xΣ(e,1-e), and f_e(x)=(1-x)/e for xΣ[1-e,1]. We study the symbolic dynamics of the kneading sequences and relate them to the analytic dynamics of these maps. Chapter one is an overview of the present theory of Metropolis, Stein, and Stein (MSS). In Chapter two a formula is given that counts the number of MSS sequences of length n. Next, the number of distinct primitive colorings of n beads with two colors, as counted by Gilbert and Riordan, is shown to equal the number of MSS sequences of length n. An algorithm is given that produces a bisection between these two quantities for each n. Lastly, the number of negative orbits of size n for the function f(z)=z^2-2, as counted by P.J. Myrberg, is shown to equal the number of MSS sequences of length n. For an MSS sequence P, let H_ϖ(P) be the unique common extension of the harmonics of P. In Chapter three it is proved that there is exactly one J(P)Σ[0,1] such that the itinerary of λ(P) under the map is λ(P)f_e is H_ϖ(P). In Chapter four it is shown that only period doubling or period halving bifurcations can occur for the family λf_e, λΣ[0,1]. Results concerning how the size of a stable orbit changes as bifurcations of the family λf_e occur are given. Let λΣ[0,1] be such that 1/2 is a periodic point of λf_e. In this case 1/2 is superstable. Chapter five investigates the boundary of the basin of attraction of this stable orbit. An algorithm is given that yields a graph directed construction such that the object constructed is the basin boundary. From this we analyze the Hausdorff dimension and measure in that dimension of the boundary. The dimension is related to the simple β-numbers, as defined by Parry. digital.library.unt.edu/ark:/67531/metadc332102/
A Comparative Study of Non Linear Conjugate Gradient Methods
We study the development of nonlinear conjugate gradient methods, Fletcher Reeves (FR) and Polak Ribiere (PR). FR extends the linear conjugate gradient method to nonlinear functions by incorporating two changes, for the step length αk a line search is performed and replacing the residual, rk (rk=b-Axk) by the gradient of the nonlinear objective function. The PR method is equivalent to FR method for exact line searches and when the underlying quadratic function is strongly convex. The PR method is basically a variant of FR and primarily differs from it in the choice of the parameter βk. On applying the nonlinear Rosenbrock function to the MATLAB code for the FR and the PR algorithms we observe that the performance of PR method (k=29) is far better than the FR method (k=42). But, we observe that when the MATLAB codes are applied to general nonlinear functions, specifically functions whose minimum is a large negative number not close to zero and the iterates too are large values far off from zero the PR algorithm does not perform well. This problem with the PR method persists even if we run the PR algorithm for more iterations or with an initial guess closer to the actual minimum. To improve the PR algorithm we suggest finding a better weighing parameter βk, using better line search method and/or using specific line search for certain functions and identifying specific restart criteria based on the function to be optimized. digital.library.unt.edu/ark:/67531/metadc283864/
Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank
Let G be a Lie group acting on a homogeneous space G/K. The center of the universal enveloping algebra of the Lie algebra of G maps homomorphically into the center of the algebra of differential operators on G/K invariant under the action of G. In the case that G is a Jacobi Lie group of rank 2, we prove that this homomorphism is surjective and hence that the center of the invariant differential operator algebra is the image of the center of the universal enveloping algebra. This is an extension of work of Bringmann, Conley, and Richter in the rank 1case. digital.library.unt.edu/ark:/67531/metadc283833/
Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems
In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers. digital.library.unt.edu/ark:/67531/metadc278917/
Minimality of the Special Linear Groups
Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear group SLn(F) with the usual topology induced by F is a minimal topological group. This is accomplished by first proving the minimality of the upper triangular group in SLn(F). The proof for the upper triangular group uses an induction argument on a chain of upper triangular subgroups and relies on general results for locally compact topological groups, quotient groups, and subgroups. Minimality of SLn(F) is concluded by appealing to the associated Lie group decomposition as the product of a compact group and an upper triangular group. We also prove the universal minimality of homeomorphism groups of one dimensional manifolds, and we give a new simple proof of the universal minimality of S∞. digital.library.unt.edu/ark:/67531/metadc279280/
Topics in Fractal Geometry
In this dissertation, we study fractal sets and their properties, especially the open set condition, Hausdorff dimensions and Hausdorff measures for certain fractal constructions. digital.library.unt.edu/ark:/67531/metadc279332/
Multifractal Measures
The purpose of this dissertation is to introduce a natural and unifying multifractal formalism which contains the above mentioned multifractal parameters, and gives interesting results for a large class of natural measures. In Part 2 we introduce the proposed multifractal formalism and study it properties. We also show that this multifractal formalism gives natural and interesting results when applied to (nonrandom) graph directed self-similar measures in Rd and "cookie-cutter" measures in R. In Part 3 we use the multifractal formalism introduced in Part 2 to give a detailed discussion of the multifractal structure of random (and hence, as a special case, non-random) graph directed self-similar measures in R^d. digital.library.unt.edu/ark:/67531/metadc279084/
Aspects of Universality in Function Iteration
This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval. digital.library.unt.edu/ark:/67531/metadc278799/
π-regular Rings
The dissertation focuses on the structure of π-regular (regular) rings. digital.library.unt.edu/ark:/67531/metadc279388/
Sufficient Conditions for Uniqueness of Positive Solutions and Non Existence of Sign Changing Solutions for Elliptic Dirichlet Problems
In this paper we study the uniqueness of positive solutions as well as the non existence of sign changing solutions for Dirichlet problems of the form \eqalign{\Delta u + g(\lambda,\ u) &= 0\quad\rm in\ \Omega,\cr u &= 0\quad\rm on\ \partial\Omega,}where $\Delta$ is the Laplace operator, $\Omega$ is a region in $\IR\sp{N}$, and $\lambda>0$ is a real parameter. For the particular function $g(\lambda,\ u)=\vert u\vert\sp{p}u+\lambda$, where $p={4\over N-2}$, and $\Omega$ is the unit ball in $\IR\sp{N}$ for $N\ge3$, we show that there are no sign changing solutions for small $\lambda$ and also we show that there are no large sign changing solutions for $\lambda$ in a compact set. We also prove uniqueness of positive solutions for $\lambda$ large when $g(\lambda,\ u)=\lambda f(u)$, where f is an increasing, sublinear, concave function with f(0) $<$ 0, and the exterior boundary of $\Omega$ is convex. In establishing our results we use a number of methods from non-linear functional analysis such as rescaling arguments, methods of order, estimation near the boundary, and moving plane arguments. digital.library.unt.edu/ark:/67531/metadc279227/
Generalized Function Solutions to Nonlinear Wave Equations with Distribution Initial Data
In this study, we consider the generalized function solutions to nonlinear wave equation with distribution initial data. J. F. Colombeau shows that the initial value problem u_tt - Δu = F(u); m(x,0) = U_0; u_t (x,0) = i_1 where the initial data u_0 and u_1 are generalized functions, has a unique generalized function solution u. Here we take a specific F and specific distributions u_0, u_1 then inspect the generalized function representatives for the initial value problem solution to see if the generalized function solution is a distribution or is more singular. Using the numerical technics, we show for specific F and specific distribution initial data u_0, u_1, there is no distribution solution. digital.library.unt.edu/ark:/67531/metadc278853/
Universal Branched Coverings
In this paper, the study of k-fold branched coverings for which the branch set is a stratified set is considered. First of all, the existence of universal k-fold branched coverings over CW-complexes with stratified branch set is proved using Brown's Representability Theorem. Next, an explicit construction of universal k-fold branched coverings over manifolds is given. Finally, some homotopy and homology groups are computed for some specific examples of Universal k-fold branched coverings. digital.library.unt.edu/ark:/67531/metadc279340/
Existence of Many Sign Changing Non Radial Solutions for Semilinear Elliptic Problems on Annular Domains
The aim of this work is the study of the existence and multiplicity of sign changing nonradial solutions to elliptic boundary value problems on annular domains. digital.library.unt.edu/ark:/67531/metadc278251/
Polish Spaces and Analytic Sets
A Polish space is a separable topological space that can be metrized by means of a complete metric. A subset A of a Polish space X is analytic if there is a Polish space Z and a continuous function f : Z —> X such that f(Z)= A. After proving that each uncountable Polish space contains a non-Borel analytic subset we conclude that there exists a universally measurable non-Borel set. digital.library.unt.edu/ark:/67531/metadc277605/
Physical Motivation and Methods of Solution of Classical Partial Differential Equations
We consider three classical equations that are important examples of parabolic, elliptic, and hyperbolic partial differential equations, namely, the heat equation, the Laplace's equation, and the wave equation. We derive them from physical principles, explore methods of finding solutions, and make observations about their applications. digital.library.unt.edu/ark:/67531/metadc277898/
On Groups of Positive Type
We describe groups of positive type and prove that a group G is of positive type if and only if G admits a non-trivial partition. We completely classify groups of type 2, and present examples of other groups of positive type as well as groups of type zero. digital.library.unt.edu/ark:/67531/metadc277804/
Multifractal Analysis of Parabolic Rational Maps
The investigation of the multifractal spectrum of the equilibrium measure for a parabolic rational map with a Lipschitz continuous potential, φ, which satisfies sup φ < P(φ) x∈J(T) is conducted. More specifically, the multifractal spectrum or spectrum of singularities, f(α) is studied. digital.library.unt.edu/ark:/67531/metadc278398/
A Topological Uniqueness Result for the Special Linear Groups
The goal of this paper is to establish the dependency of the topology of a simple Lie group, specifically any of the special linear groups, on its underlying group structure. The intimate relationship between a Lie group's topology and its algebraic structure dictates some necessary topological properties, such as second countability. However, the extent to which a Lie group's topology is an "algebraic phenomenon" is, to date, still not known. digital.library.unt.edu/ark:/67531/metadc278561/
Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints
The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the region bounded by two coaxial cylinders of height 1 with the outer cylinder having radius 1 and the inner having radius ρ. The problem is to find a mapping, u, from Ω into R^3 which agrees with a given function v on the surfaces of the cylinders and minimizes the energy function over the set of functions in the Sobolev space H^(1,2)(Ω; R^3) having norm 1 almost everywhere. In the variational formulation, the norm 1 condition is emulated by a constraint function B. The direction of descent studied here is given by a projected gradient, called a B-gradient, which involves the projection of a Sobolev gradient onto the tangent space for B. A numerical implementation of the algorithm, the results of which agree with the theoretical results and which is independent of any strong properties of the domain, is described. In chapter 2, the Sobolev space setting and a significant projection in the theory of Sobolev gradients are discussed. The variational formulation is introduced in Chapter 3, where the issues of differentiability and existence of gradients are explored. A theorem relating the B-gradient to the theory of Lagrange multipliers is stated as well. Basic theorems regarding the continuous steepest descent given by the Sobolev and B-gradients are stated in Chapter 4, and conditions for convergence in the application to the liquid crystal problem are given as well. Finally, in Chapter 5, the algorithm is described and numerical results are examined. digital.library.unt.edu/ark:/67531/metadc278362/
Plane Curves, Convex Curves, and Their Deformation Via the Heat Equation
We study the effects of a deformation via the heat equation on closed, plane curves. We begin with an overview of the theory of curves in R3. In particular, we develop the Frenet-Serret equations for any curve parametrized by arc length. This chapter is followed by an examination of curves in R2, and the resultant adjustment of the Frenet-Serret equations. We then prove the rotation index for closed, plane curves is an integer and for simple, closed, plane curves is ±1. We show that a curve is convex if and only if the curvature does not change sign, and we prove the Isoperimetric Inequality, which gives a bound on the area of a closed curve with fixed length. Finally, we study the deformation of plane curves developed by M. Gage and R. S. Hamilton. We observe that convex curves under deformation remain convex, and simple curves remain simple. digital.library.unt.edu/ark:/67531/metadc278501/
Cycles and Cliques in Steinhaus Graphs
In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian. digital.library.unt.edu/ark:/67531/metadc278469/
Property (H*) and Differentiability in Banach Spaces
A continuous convex function on an open interval of the real line is differentiable everywhere except on a countable subset of its domain. There has been interest in the problem of characterizing those Banach spaces where the continuous functions exhibit similar differentiability properties. In this paper we show that if a Banach space E has property (H*) and B_E• is weak* sequentially compact, then E is an Asplund space. In the case where the space is weakly compactly generated, it is shown that property (H*) is equivalent for the space to admit an equivalent Frechet differentiable norm. Moreover, we define the SH* spaces, show that every SH* space is an Asplund space, and show that every weakly sequentially complete SH* space is reflexive. Also, we study the relation between property (H*) and the asymptotic norming property (ANP). By a slight modification of the ANP we define the ANP*, and show that if the dual of a Banach spaces has the ANP*-I then the space admits an equivalent Fréchet differentiability norm, and that the ANP*-II is equivalent to the space having property (H*) and the closed unit ball of the dual is weak* sequentially compact. Also, we show that in the dual of a weakly countably determined Banach space all the ANP-K'S are equivalent, and they are equivalent for the predual to have property (H*). digital.library.unt.edu/ark:/67531/metadc277852/
Applications of Rapidly Mixing Markov Chains to Problems in Graph Theory
In this dissertation the results of Jerrum and Sinclair on the conductance of Markov chains are used to prove that almost all generalized Steinhaus graphs are rapidly mixing and an algorithm for the uniform generation of 2 - (4k + 1,4,1) cyclic Mendelsohn designs is developed. digital.library.unt.edu/ark:/67531/metadc277740/
Primitive Substitutive Numbers are Closed under Rational Multiplication
Lehr (1991) proved that, if M(q, r) denotes the set of real numbers whose expansion in base-r is q-automatic i.e., is recognized by an automaton A = (Aq, Ar, ao, δ, φ) (or is the image under a letter to letter morphism of a fixed point of a substitution of constant length q) then M(q, r) is closed under addition and rational multiplication. Similarly if we let M(r) denote the set of real numbers α whose base-r digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution then in an attempt to generalize Lehr's result we show that the set M(r) is closed under multiplication by rational numbers. We also show that M(r) is not closed under addition. digital.library.unt.edu/ark:/67531/metadc278637/
Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices
The notion of uniform countable additivity or uniform absolute continuity is present implicitly in the Lebesgue Dominated Convergence Theorem and explicitly in the Vitali-Hahn-Saks and Nikodym Theorems, respectively. V. M. Dubrovsky studied the connection between uniform countable additivity and uniform absolute continuity in a series of papers, and Bartle, Dunford, and Schwartz established a close relationship between uniform countable additivity in ca(Σ) and operator theory for the classical continuous function spaces C(K). Numerous authors have worked extensively on extending and generalizing the theorems of the preceding authors. Specifically, we mention Bilyeu and Lewis as well as Brooks and Drewnowski, whose efforts molded the direction and focus of this paper. This paper is a study of the techniques used by Bell, Bilyeu, and Lewis in their paper on uniform exhaustivity and Banach lattices to present a Banach lattice version of two important and powerful results in measure theory by Brooks and Drewnowski. In showing that the notions of exhaustivity and continuity take on familiar forms in certain Banach lattices of measures they show that these important measure theory results follow as corollaries of the generalized Banach lattice versions. This work uses their template to generalize results established by Bator, Bilyeu, and Lewis. digital.library.unt.edu/ark:/67531/metadc278330/
The Continuous Wavelet Transform and the Wave Front Set
In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet. digital.library.unt.edu/ark:/67531/metadc277762/
Steepest Sescent on a Uniformly Convex Space
This paper contains four main ideas. First, it shows global existence for the steepest descent in the uniformly convex setting. Secondly, it shows existence of critical points for convex functions defined on uniformly convex spaces. Thirdly, it shows an isomorphism between the dual space of H^{1,p}[0,1] and the space H^{1,q}[0,1] where p > 2 and {1/p} + {1/q} = 1. Fourthly, it shows how the Beurling-Denny theorem can be extended to find a useful function from H^{1,p}[0,1] to L_{p}[1,0] where p > 2 and addresses the problem of using that function to establish a relationship between the ordinary and the Sobolev gradients. The paper contains some numerical experiments and two computer codes. digital.library.unt.edu/ark:/67531/metadc278194/
Existence of a Sign-Changing Solution to a Superlinear Dirichlet Problem
We study the existence, multiplicity, and nodal structure of solutions to a superlinear elliptic boundary value problem. Under specific hypotheses on the superlinearity, we show that there exist at least three nontrivial solutions. A pair of solutions are of one sign (positive and negative respectively), and the third solution changes sign exactly once. Our technique is variational, i.e., we study the critical points of the associated action functional to find solutions. First, we define a codimension 1 submanifold of a Sobolev space . This submanifold contains all weak solutions to our problem, and in our case, weak solutions are also classical solutions. We find nontrivial solutions which are local minimizers of our action functional restricted to various subsets of this submanifold. Additionally, if nondegenerate, the one-sign solutions are of Morse index 1 and the sign-changing solution has Morse index 2. We also establish that the action level of the sign-changing solution is bounded below by the sum of the two lesser levels of the one-sign solutions. Our results extend and complement the findings of Z. Q. Wang ([W]). We include a small sample of earlier works in the general area of superlinear elliptic boundary value problems. digital.library.unt.edu/ark:/67531/metadc278179/
Characterizations of Some Combinatorial Geometries
We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic. digital.library.unt.edu/ark:/67531/metadc277894/
Intuition versus Formalization: Some Implications of Incompleteness on Mathematical Thought
This paper describes the tension between intuition about number theory and attempts to formalize it. I will first examine the root of the dilemma, Godel's First Incompleteness Theorem, which demonstrates that in any reasonable formalization of number theory, there will be independent statements. After proving the theorem, I consider some of its consequences on intuition, focusing on Freiling's "Dart Experiment" which is based on our usual notion of the real numbers as a line. This experiment gives an apparent refutation of the Axiom of Choice and the Continuum Hypothesis; however, it also leads to an equally apparent paradox. I conclude that such paradoxes are inevitable as the formalization of mathematics takes us further from our initial intuitions. digital.library.unt.edu/ark:/67531/metadc277970/
A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces
We develop a numerical method for solving singular differential equations and demonstrate the method on a variety of singular problems including first order ordinary differential equations, second order ordinary differential equations which have variational principles, and one partial differential equation. digital.library.unt.edu/ark:/67531/metadc278653/
Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative Anywhere
In this paper, we study continuous functions with no finite or infinite one-sided derivative anywhere. In 1925, A. S. Beskovitch published an example of such a function. Since then we call them Beskovitch functions. This construction is presented in chapter 2, The example was simple enough to clear the doubts about the existence of Besicovitch functions. In 1932, S. Saks showed that the set of Besicovitch functions is only a meager set in C[0,1]. Thus the Baire category method for showing the existence of Besicovitch functions cannot be directly applied. A. P. Morse in 1938 constructed Besicovitch functions. In 1984, Maly revived the Baire category method by finding a non-empty compact subspace of (C[0,1], || • ||) with respect to which the set of Morse-Besicovitch functions is comeager. digital.library.unt.edu/ark:/67531/metadc278627/
A Generalization of Sturmian Sequences: Combinatorial Structure and Transcendence
We investigate a class of minimal sequences on a finite alphabet Ak = {1,2,...,k} having (k - 1)n + 1 distinct subwords of length n. These sequences, originally defined by P. Arnoux and G. Rauzy, are a natural generalization of binary Sturmian sequences. We describe two simple combinatorial algorithms for constructing characteristic Arnoux-Rauzy sequences (one of which is new even in the Sturmian case). Arnoux-Rauzy sequences arising from fixed points of primitive morphisms are characterized by an underlying periodic structure. We show that every Arnoux-Rauzy sequence contains arbitrarily large subwords of the form V^2+ε and, in the Sturmian case, arbitrarily large subwords of the form V^3+ε. Finally, we prove that an irrational number whose base b-digit expansion is an Arnoux-Rauzy sequence is transcendental. digital.library.unt.edu/ark:/67531/metadc278440/
Descriptions and Computation of Ultrapowers in L(R)
The results from this dissertation are an exact computation of ultrapowers by measures on cardinals $\aleph\sb{n},\ n\in w$, in $L(\IR$), and a proof that ordinals in $L(\IR$) below $\delta\sbsp{5}{1}$ represented by descriptions and the identity function with respect to sequences of measures are cardinals. An introduction to the subject with the basic definitions and well known facts is presented in chapter I. In chapter II, we define a class of measures on the $\aleph\sb{n},\ n\in\omega$, in $L(\IR$) and derive a formula for an exact computation of the ultrapowers of cardinals by these measures. In chapter III, we give the definitions of descriptions and the lowering operator. Then we prove that ordinals represented by descriptions and the identity function are cardinals. This result combined with the fact that every cardinal $<\delta\sbsp{5}{1}$ in $L(\IR$) is represented by a description (J1), gives a characterization of cardinals in $L(\IR$) below \$\delta\sbsp{5}{1}. Concrete examples of formal computations are shown in chapter IV. digital.library.unt.edu/ark:/67531/metadc277867/
Tensor Products of Banach Spaces
Tensor products of Banach Spaces are studied. An introduction to tensor products is given. Some results concerning the reciprocal Dunford-Pettis Property due to Emmanuele are presented. Pelczyriski's property (V) and (V)-sets are studied. It will be shown that if X and Y are Banach spaces with property (V) and every integral operator from X into Y* is compact, then the (V)-subsets of (X⊗F)* are weak* sequentially compact. This in turn will be used to prove some stronger convergence results for (V)-subsets of C(Ω,X)*. digital.library.unt.edu/ark:/67531/metadc278580/
Traveling Wave Solutions of the Porous Medium Equation
We prove the existence of a one-parameter family of solutions of the porous medium equation, a nonlinear heat equation. In our work, with space dimension 3, the interface is a half line whose end point advances at constant speed. We prove, by using maximum principle, that the solutions are stable under a suitable class of perturbations. We discuss the relevance of our solutions, when restricted to two dimensions, to gravity driven flows of thin films. Here we extend the results of J. Iaia and S. Betelu in the paper "Solutions of the porous medium equation with degenerate interfaces" to a higher dimension. digital.library.unt.edu/ark:/67531/metadc271876/
Graev Metrics and Isometry Groups of Polish Ultrametric Spaces
This dissertation presents results about computations of Graev metrics on free groups and characterizes isometry groups of countable noncompact Heine-Borel Polish ultrametric spaces. In Chapter 2, computations of Graev metrics are performed on free groups. One of the related results answers an open question of Van Den Dries and Gao. In Chapter 3, isometry groups of countable noncompact Heine-Borel Polish ultrametric spaces are characterized. The notion of generalized tree is defined and a correspondence between the isomorphism group of a generalized tree and the isometry group of a Heine-Borel Polish ultrametric space is established. The concept of a weak inverse limit is introduced to capture the characterization of isomorphism groups of generalized trees. In Chapter 4, partial results of isometry groups of uncountable compact ultrametric spaces are given. It turns out that every compact ultrametric space has a unique countable orbital decomposition. An orbital space consists of disjoint orbits. An orbit subspace of an orbital space is actually a compact homogeneous ultrametric subspace. digital.library.unt.edu/ark:/67531/metadc271898/
Determinacy-related Consequences on Limit Superiors
Laczkovich proved from ZF that, given a countable sequence of Borel sets on a perfect Polish space, if the limit superior along every subsequence was uncountable, then there was a particular subsequence whose intersection actually contained a perfect subset. Komjath later expanded the result to hold for analytic sets. In this paper, by adding AD and sometimes V=L(R) to our assumptions, we will extend the result further. This generalization will include the increasing of the length of the sequence to certain uncountable regular cardinals as well as removing any descriptive requirements on the sets. digital.library.unt.edu/ark:/67531/metadc271913/
FIRST PREV 1 2 3 4 5 NEXT LAST