You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Environmental Science
Biodiversity and Genetic Structure of Benthic Macroinvertebrates along an Altitudinal Gradient: A Comparison of the Windhond and Róbalo River Communities on Navarino Island, Chile
Altitudinal gradients in Sub-Antarctic freshwater systems present unique opportunities to study the effect of distinct environmental gradients on benthic macroinvertebrate community composition and dispersal. This study investigates patterns in biodiversity, dispersal and population genetic structure of benthic macroinvertebrate fauna across an altitudinal gradient between two watersheds on Navarino Island in southern Chile. Patterns in diversity, density, evenness and functional feeding groups were not significantly different across the altitudinal gradient in both the Windhond and Róbalo Rivers. Taxa richness in both rivers generally increased from the headwaters of the river to the mouth, and functional feeding group patterns were consistent with the predictions of the River Continuum Concept. Population genetic structure and gene flow was investigated by sampling the mitochondrial cytochrome oxidase I gene in two invertebrate species with different dispersal strategies. Hyalella simplex (Amphipoda) is an obligate aquatic species, and Meridialaris chiloeense (Ephemeroptera) is an aquatic larvae and a terrestrial winged adult. Contrasting patterns of population genetic structure were observed. Results for Hyalella simplex indicate significant differentiation in genetic structure in the Amphipod populations between watersheds and lower genetic diversity in the Róbalo River samples, which may be a result of instream dispersal barriers. Meridialaris chiloeense exhibited weak population structure but higher genetic diversity, which suggests this species is able to disperse widely as a winged adult. digital.library.unt.edu/ark:/67531/metadc849782/
The Effects of Neonicotinoid Exposure on Embryonic Development and Organ Mass in Northern Bobwhite Quail
Since their emergence in the early 1990s, neonicotinoid use has increased exponentially to make them the world's most prevalent insecticides. Although there is considerable research concerning the lethality of neonicotinoids, their sub-lethal and developmental effects are still being explored, especially with regards to non-mammalian species. The goal of this research was to investigate the effects of the neonicotinoid imidacloprid on the morphological and physiological development of northern bobwhite quail (Colinus virginianus). Bobwhite eggs (n = 650) were injected with imidacloprid concentrations of 0 (sham), 10, 50, 100 and 150 grams per kilogram of egg mass, which was administered at day 0 (pre-incubation), 3, 6, 9, or 12 of growth. Embryos were dissected on day 19 when they were weighed, staged, and examined for any overt structural deformities. Embryonic heart, liver, lungs and kidneys were also weighed and preserved for future use. Treated embryos exhibited increased frequency of severely deformed beaks and legs, as well as larger hearts and smaller lungs at the higher dosing concentrations. Some impacts are more pronounced in specific dosing periods, implying that there may be critical windows of development when embryos are highly susceptible to neonicotinoid exposure. This investigation suggests that imidacloprid could play a significant role in chick survival and declining quail populations in treated regions of the country. digital.library.unt.edu/ark:/67531/metadc849707/
The Influence of Urban Green Spaces on Declining Bumble Bees (Hymenoptera: Apidae)
Bumble bees (Bombus spp.) are adept pollinators of countless cultivated and wild flowering plants, but many species have experienced declines in recent decades. Though urban sprawl has been implicated as a driving force of such losses, urban green spaces hold the potential to serve as habitat islands for bumble bees. As human populations continue to grow and metropolitan areas become larger, the survival of many bumble bee species will hinge on the identification and implementation of appropriate conservation measures at regional and finer scales. North Texas is home to some the fastest-growing urban areas in the country, including Denton County, as well as at least two declining bumble bee species (B. pensylvanicus and B. fraternus). Using a combination of field , molevular DNA and GIS methods I evaluated the persistence of historic bumble bee species in Denton County, and investigated the genetic structure and connectivity of the populations in these spaces. Field sampling resulted in the discovery of both B. pensylvanicus and B. fraternus in Denton County's urban green spaces. While the relative abundance of B. fraternus in these spaces was significantly lower than historic levels gleaned from museum recors, that of B. pensylvanicus was significantly higher. Statistical analyses found that both bare ground and tree cover surrounding sample sites were negatively associated with numbers of bumble bee individuals and hives detected in these green spaces. Additionally, limited genetic structuring of bumble bee populations was detected, leading to the conclusion that extensive gene flow is occurring across populations in Denton County. digital.library.unt.edu/ark:/67531/metadc849737/
Informing Conservation Management Using Genetic Approaches: Greater Sage-grouse and Galápagos Short-eared Owls as Case Studies
Small isolated populations are of particular conservation interest due to their increased extinction risk. This dissertation investigates two small wild bird populations using genetic approaches to inform their conservation. Specifically, one case study investigated a Greater Sage-grouse (Centrocercus urophasianus) population located in northwest Wyoming near Jackson Hole and Grand Teton National Park. Microsatellite data showed that the Jackson sage-grouse population possessed significantly reduced levels of neutral genetic diversity and was isolated from other Wyoming populations. Analysis with single nucleotide polymorphisms (SNPs) and microsatellite data provided further evidence that the population's timing of isolation was relatively recent and most likely due to recent anthropogenic habitat changes. Conservation recommendations include maintaining or increasing the population's current size and reestablishing gene flow with the nearest large population. The second case study investigated the genetic distinctiveness of the Floreana island population of the Galápagos Short-eared Owl (Asio flammeus galapagoensis). Mitochondrial DNA sequence data did not detect differences across nine island populations, yet microsatellite and morphometric data indicated that limited gene flow existed with the population and surrounding island populations, which appeared asymmetric in direction from Floreana to Santa Cruz with no indication of gene flow into Floreana. These results have important conservation implications and recommend that the Floreana Short-eared Owl population be held in captivity during the rodenticide application planned for an ecosystem restoration project in 2018. The population is less likely to receive immigrants from surrounding island populations if negatively effected by feeding on poisoned rodents. digital.library.unt.edu/ark:/67531/metadc849663/
Photo-induced Toxicity of Deepwater Horizon Spill Oil to Four Native Gulf of Mexico Species
The 2010 Deepwater Horizon oil spill resulted in the accidental release of millions of barrels of crude oil into the Gulf of Mexico (GoM). Photo-induced toxicity following co-exposure to ultraviolet (UV) radiation is one mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Blue crab (Callinectes sapidus) are an important commercial and ecological resource in the Gulf of Mexico and their largely transparent larvae may make them sensitive to PAH photo-induced toxicity. Mahi-mahi (Coryphaena hippurus), an important fishery resource, have positively buoyant, transparent eggs. These characteristics may result in mahi-mahi embryos being at particular risk from photo-induced toxicity. Red drum (Sciaenops ocellatus) and speckled seatrout (Cynoscion nebulosus) are both important fishery resources in the GoM. They spawn near-shore and produce positively buoyant embryos that hatch into larvae in about 24 h. The goal of this body of work was to determine whether exposure to UV as natural sunlight enhances the toxicity of crude oil to early lifestage GoM species. Larval and embryonic organisms were exposed to several dilutions of water accommodated fractions (WAF) from several different oils collected in the field under chain of custody during the 2010 spill and two to three gradations of natural sunlight in a factorial design. Here, we report that co-exposure to natural sunlight and oil significantly reduced larval survival and embryo hatch compared to exposure to oil alone. digital.library.unt.edu/ark:/67531/metadc822778/
Photoinduced Toxicity in Early Lifestage Fiddler Crab (Uca Longisignalis) Following Exposure to Deepwater Horizon Spill Oil
Access: Use of this item is restricted to the UNT Community.
The 2010 Deepwater Horizon (DWH) oil spill resulted in a large release of polycyclic aromatic hydrocarbons (PAH) into the Gulf of Mexico. PAH can interact with ultraviolet radiation (UV) resulting in increased toxicity, particularly to early lifestage organisms. The goal of this research was to determine the sensitivity of fiddler crab larvae (Uca longisignalis) to photo-induced toxicity following exposure to Deepwater Horizon spill oil in support of the DWH Natural Resource Damage Assessment. Five replicate dishes each containing 20 larvae, were exposed to one of three UV treatments (10%, 50%, and 100% ambient natural sunlight) and one of five dilutions of water accommodated fractions of two naturally weathered source oils. A dose dependent effect of PAH and UV on larval mortality was observed. Mortality was markedly higher in PAH treatments that included co-exposure to more intense UV light. PAH treatments under low intensity sunlight had relatively high survival. These data demonstrate the importance of considering combined effects of non-chemical (i.e. UV exposure) and chemical stressors and the potential for photo-induced effects after exposure to PAH following the Deepwater Horizon spill. digital.library.unt.edu/ark:/67531/metadc822799/
Spatially Explicit Modeling of West Nile Virus Risk Using Environmental Data
West Nile virus (WNV) is an emerging infectious disease that has widespread implications for public health practitioners across the world. Within a few years of its arrival in the United States the virus had spread across the North American continent. This research focuses on the development of a spatially explicit GIS-based predictive epidemiological model based on suitable environmental factors. We examined eleven commonly mapped environmental factors using both ordinary least squares regression (OLS) and geographically weighted regression (GWR). The GWR model was utilized to ascertain the impact of environmental factors on WNV risk patterns without the confounding effects of spatial non-stationarity that exist between place and health. It identifies the important underlying environmental factors related to suitable mosquito habitat conditions to make meaningful and spatially explicit predictions. Our model represents a multi-criteria decision analysis approach to create disease risk maps under data sparse situations. The best fitting model with an adjusted R2 of 0.71 revealed a strong association between WNV infection risk and a subset of environmental risk factors including road density, stream density, and land surface temperature. This research also postulates that understanding the underlying place characteristics and population composition for the occurrence of WNV infection is important for mitigating future outbreaks. While many spatial and aspatial models have attempted to predict the risk of WNV transmission, efforts to link these factors within a GIS framework are limited. One of the major challenges for such integration is the high dimensionality and large volumes typically associated with such models and data. This research uses a spatially explicit, multivariate geovisualization framework to integrate an environmental model of mosquito habitat with human risk factors derived from socio-economic and demographic variables. Our results show that such an integrated approach facilitates the exploratory analysis of complex data and supports reasoning about the underlying spatial processes that result in differential risks for WNV. This research provides different tools and techniques for predicting the WNV epidemic and provides more insights into targeting specific areas for controlling WNV outbreaks. digital.library.unt.edu/ark:/67531/metadc822841/
Dynamics of Stream Fish Metacommunities in Response to Drought and Reconnectivity
This dissertation investigates the spatio-temporal dynamics of intermittent stream fish metacommunities in response drought-induced fragmentation and re-connectivity using both field and experimental approaches. A detailed field study was conducted in two streams and included pre-drought, drought, and post-drought hydrological periods. Fish assemblages and metacommunity structure responded strongly to changes in hydrological conditions with dramatic declines in species richness and abundance during prolonged drought. Return of stream flows resulted in a trend toward recovery but ultimately assemblages failed to fully recover. Differential mortality, dispersal, recruitment among species indicates species specific responses to hydrologic fragmentation, connectivity, and habitat refugia. Two manipulative experiments tested the effects of drought conditions on realistic fish assemblages. Fishes responded strongly to drought conditions in which deeper pools acted as refugia, harboring greater numbers of fish. Variability in assemblage structure and movement patterns among stream pools indicated species specific habitat preferences in response predation, resource competition, and desiccation. Connecting stream flows mediated the impacts of drought conditions and metacommunity dynamics in both experiments. Results from field and experimental studies indicate that stream fish metacommunities are influenced by changes in hydrological conditions and that the timing, duration, and magnitude of drought-induced fragmentation and reconnecting stream flows have important consequences metacommunity dynamics. digital.library.unt.edu/ark:/67531/metadc804923/
Effects of Macrophyte Functional Diversity on Taxonomic and Functional Diversity and Stability of Tropical Floodplain Fish Assemblages
Multiple dimensions of biodiversity within and across producer and consumer guilds in the food web affect an ecosystem’s functionality and stability. Tropical and subtropical aquatic ecosystems, which are extremely diverse, have received much less attention than terrestrial ecosystems in regards to the effects of biodiversity on ecosystem functioning. We conducted a field experiment that tested for effects of macrophyte functional diversity on diversity and stability of associated fish assemblages in floodplain lakes of the Upper Paraná River floodplain, Brazil. Three levels of macrophyte functional diversity were maintained through time in five floodplain lakes and response variables included various components of fish taxonomic and functional diversity and stability. Components of functional diversity of fish assemblages were quantified using a suite of ecomorphological traits that relate to foraging and habitat use. Response variables primarily distinguished macrophyte treatments from the control. Macrophyte treatments had, on average, double the number of species and total abundance than the control treatment, but only limited effects on stability. The high diversity treatment was essentially nested within the low diversity for assemblage structure and had similar or even slightly lower levels of species richness and abundance in most cases. Gymnotiformes and young-of-year were diverse and relatively abundant in macrophyte treatments contributing to the large differences in diversity between macrophyte and control treatments. Higher fish diversity in structured habitats compared to more homogenous habitats is likely associated with increased ecomorphological diversity to exploit heterogeneous microhabitats and resources provided by the macrophytes. digital.library.unt.edu/ark:/67531/metadc804900/
Developing a Forest Gap Model to Be Applied to a Watershed-scaled Landscape in the Cross Timbers Ecoregion Using a Topographic Wetness Index
A method was developed for extending a fine-scaled forest gap model to a watershed-scaled landscape, using the Eastern Cross Timbers ecoregion as a case study for the method. A topographic wetness index calculated from digital elevation data was used as a measure of hydrologic across the modeled landscape, and the gap model modified to have with a topographically-based hydrologic input parameter. The model was parameterized by terrain type units that were defined using combinations of USDA soil series and classes of the topographic wetness index. A number of issues regarding the sources, grid resolutions, and processing methods of the digital elevation data are addressed in this application of the topographic wetness index. Three different grid sizes, 5, 10, and 29 meter, from both LiDAR-derived and contour-derived elevation grids were used, and the grids were processed using both single-directional flow algorithm and bi-directional flow algorithm. The result of these different grids were compared and analyzed in context of their application in defining terrain types for the forest gap model. Refinements were made in the timescale of gap model’s weather model, converting it into a daily weather generator, in order to incorporate the effects of the new topographic/hydrologic input parameter. The precipitation model was converted to use a Markov model to initiate a sequence of wet and dry days for each month, and then daily precipitation amounts were determined using a gamma distribution. The output of the new precipitation model was analyzed and compared with a 100-year history of daily weather records at daily, monthly, and annual timescales. Model assumptions and requirements for biological parameters were thoroughly investigated and questioned. Often these biological parameters are based on little more than assumptions and intuition. An effort to base as many of the model’s biological parameters on measured data was made, including a new technique for estimating optimal volumetric growth rate by measuring tree rings. The gap model was set up to simulate various terrain types within the landscape. digital.library.unt.edu/ark:/67531/metadc700050/
Estimated Extent and Fate of Chlorinated Solvent Contamination in the Soil of the Naval Air Station, Dallas, Texas
This thesis estimates the spatial extent of chlorinated solvent contamination of the soil at the Naval Air Station, Dallas, then estimates the fate and transport of these contaminants, over time, using the Soil Transport and Fate database and the Vadose-Zone Interactive Processes (VIP) modeling software. Geostatistical analysis identifies two areas with serious chlorinated solvent contamination. Fate and transport modeling estimates that this contamination will degrade and disperse from the soil phase to below regulatory limits within one year, although there is a risk of groundwater contamination. Contaminants are estimated to persist in the water and air phases of the soil. Further sampling is recommended to confirm the results of this study. digital.library.unt.edu/ark:/67531/metadc500858/
The Role of Rainfed Farm Ponds in Sustaining Agriculture and Soil Conservation in the Dry High Valley Region of Cochabamba, Bolivia: Design Considerations and Post Impoundment Analysis
Lack of sufficient water for irrigation is a major problem in and around the valleys surrounding the town of Aiquile, Cochabamba Bolivia. In addition, much of the region is undergoing desertification compounded by drought, deforestation, bad traditional agricultural practices, over grazing and a "torrential" rainfall pattern leading to severe soil erosion and low agricultural production. Between 1992 and 1994, the author constructed a network of 24 small, mostly rainfed farm ponds to increase agricultural production and alleviate soil erosion and land-use problems by improving cover conditions. A 5-year post-impoundment analysis was carried out in 1998. The analysis examined current pond conditions, design criteria, irrigation water / crop production increases and the alleviation of land-use problems. Current pond conditions fell into four distinct categories with only 25 percent of the ponds being deemed as "functioning well." The project increased irrigation in the region and improved cover conditions in 66 percent of the pond sites. digital.library.unt.edu/ark:/67531/metadc501015/
The Effect of Natural Gas Well Setback Distance on Drillable Land in the City of Denton, Texas
Access: Use of this item is restricted to the UNT Community.
Municipalities protect human health and environmental resources from impacts of urban natural gas drilling through setback distances; the regulation of distances between well sites and residences, freshwater wells, and other protected uses. Setback distances have increased over time, having the potential to alter the amount and geographical distribution of drillable land within a municipality, thereby having implications for future land use planning and increasing the potential for future incompatible land uses. This study geographically applies a range of setback distances to protected uses and freshwater wells in the city limits of Denton, Texas to investigate the effect on the amount of land remaining for future gas well development and production. Denton lies on the edge of a productive region of the Barnett Shale geological formation, coinciding with a large concentration of drillable land in the southwestern region of the study area. This region will have the greatest potential for impacts to future municipal development and land use planning as a result of future gas well development and higher setback standards. Given the relatively high acreage of drillable land in industrially zoned subcategory IC-G and the concern regarding gas well drilling in more populated areas, future drilling in IC-G, specifically in IC-G land cover classes mowed/grazed/agriculture and herbaceous, would have the least impact on residential uses and tree cover, as well as decreasing the potential for future incompatible land uses. digital.library.unt.edu/ark:/67531/metadc499998/
Tissue-specific Bioconcentration Factor of the Synthetic Steroid Hormone Medroxyprogesterone Acetate (Mpa) in the Common Carp, Cyprinus Carpia
Due to the wide spread occurrence of medroxyprogesterone acetate (MPA), a pharmaceutical compound, in wastewater effluent and surface waters, the objectives of this work were to determine the tissue specific uptake and bioconcentration factor (BCF) for MPA in common carp. BCFs were experimentally determined for MPA in fish using a 14-day laboratory test whereby carp where exposed to 100 μg/L of MPA for a 7-day period followed by a depuration phase in which fish were maintained in dechlorinated tap water for an additional 7 days. MPA concentrations in muscle, brain, liver and plasma were determined by liquid chromatography/mass spectrometry (LC/MS). The results from the experiment indicate that MPA can accumulate in fish, however, MPA is not considered to be bioaccumulative based on regulatory standards (BCF ≥ 1000). Although MPA has a low BCF value in common carp, this compound may cause reproductive effects in fish at environmentally relevant concentrations. digital.library.unt.edu/ark:/67531/metadc500141/
Macroinvertebrate Colonization and Assemblages Associated with Aquatic Macrophytes in a Newly Created Urban Floodway Ecosystem, Dallas, Tx
A study of macroinvertebrate colonization and assemblages, including secondary productivity of the familiar bluet damselfly or Enallagma civile Hagen (Odonata: Coenagrionidae), associated with the aquatic macrophytes Heteranthera dubia (Jacq.) MacMill. (water stargrass) and Potamogeton nodosus Poir. (American pondweed) was conducted at the Dallas Floodway Extension Trinity River Project (DFE) Lower Chain of Wetlands (LCOW), Dallas, TX, from September 2010 through November 2011. Macroinvertebrate abundance, taxa richness, Simpson's index of diversity, and Simpson's evenness from the two macrophytes and from three different wetland cells of varying construction completion dates, water sources, and native aquatic vegetation establishment were analyzed along with basic water quality metrics (temperature °C, pH, dissolved oxygen mg/L, and conductivity µs/cm). E. civile nymphs were separated into five developmental classes for secondary productivity estimations between macrophytes and wetland cell types. Mean annual secondary productivity in the DFE LCOW among two macrophytes of E. civile was 1392.90 ash-free dry weight mg/m²/yr, standing stock biomass was 136.77 AFDW mg/m2/yr, cohort production / biomass (P/B) ratio was calculated to be 4.30 / yr and the annual production / biomass (P/B) ratio was 10.18 /yr. digital.library.unt.edu/ark:/67531/metadc500077/
Population Dynamics of Zebra Mussels (Dreissena Polymorpha) in a North Texas Reservoir: Implications for Invasions in the Southern United States
This dissertation has two main objectives: first, quantify the effects of environmental conditions on spatio-temporal spawning and larval dynamics of zebra mussels (Dreissena polymorpha [Pallas 1771]) in Lake Texoma, and second, quantify the effects of environmental conditions on survival, growth, and reproduction of young of the year (YOY) juvenile zebra mussels. These biological responses directly influence population establishment success and invasive spread dynamics. Reproductive output of the zebra mussel population in Lake Texoma was significantly related to water temperature and lake elevation. Annual maximum larval (veliger) density decreased significantly indicating a population crash, which was likely caused by thermal stress and variability of lake elevation. In 2011, temperatures peaked at 34.3°C and lake elevation decreased to the lowest level recorded during the previous 18 years, which desiccated a substantial number of settled mussels in littoral zones. Estimated mean date of first spawn in Lake Texoma was observed approximately 1.5 months earlier than in Lake Erie, and peak veliger densities were observed two months earlier. Veligers were observed in the deepest oxygenated water after lake stratification. During a 69-day in situ experiment during summer in Lake Texoma, age-specific mortality of zebra mussels was generally high until temperatures decreased to approximately 28°C, which was observed after lake turnover in late summer. No study organism died after temperatures decreased to less than 26°C, which indicates individuals that survive high summer temperatures are likely to persist into autumn/winter. Shell length growth and soft tissue growth rates were related to temperature and chlorophyll-a concentration, respectively. Growth rates of study organisms were among the highest ever reported for D. polymorpha. Water temperature and body size influenced reproduction of YOY zebra mussels in Lake Texoma. Fecundity of females were positively related to temperature; however, sperm production was negatively related to temperature, which indicates males could be more sensitive to physiologically-stressful conditions than females and could perform better in cooler waters. YOY mussels spawned up to approximately 40,000 eggs and 3.47E+08 sperm after a single-summer growing season. Reproductive effort and reproductive mass were independent of sex. YOY individuals from each study site (n = 5) were able to spawn viable gametes capable of sperm binding and egg cleavage, which provides the first evidence that YOY zebra mussels can successfully reproduce. Individual mortality of zebra mussels will likely be high in warm waters and intermittent, extreme droughts, which are observed more frequently at lower latitudes, can significantly reduce population sizes. However, rapid growth and single-season maturation can decrease generation times and could facilitate establishment and spread of zebra mussels in warm-water environments in the southern United States. digital.library.unt.edu/ark:/67531/metadc407755/
Modeling the Effects of Chronic Toxicity of Pharmaceutical Chemicals on the Life History Strategies of Ceriodaphnia Dubia: a Multigenerational Study
Trace quantities of pharmaceuticals (including carbamazepine and sertraline) are continuously discharged into the environment, which causes concern among scientists and regulators regarding their potential long-term impacts on aquatic ecosystems. These compounds and their metabolites are continuously interacting with the orgranisms in various life stages, and may differentially influence development of embryo, larvae, juvenile, and adult stages. To fully understand the potential ecological risks of two candidate pharmaceutical chemicals (carbamazepine (CBZ) and sertraline (SERT)) exposure on survival, growth and reproduction of Ceriodaphnia dubia in three sucessive generations under static renewal toxicity test, a multigenerational approach was taken. Results indicate that SERT exposure showed higher sensitivity to chronic exposure to C. dubia growth and reproduction than CBZ exposure. The lowest concentration to affect fecundity and growth was at 50 µg L-1 SERT in the first two generations. These parameters become more sensitive during the third generation where the LOEC was 4.8 µg L-1. The effective concentrations (EC50) for the number of offspring per female, offspring body size, and dry weight were 17.2, 21.2, and 26.2 µg SERT L-1, respectively. Endpoints measured in this study demonstrate that chronic exposure of C. dubia to SERT leads to effects that occur at concentrations an order of magnitude higher than predicted environmental concentrations indicating potential transgenerationals effects. Additionally, a process-based dynamic energy budget (DEB) model is implemented to predict the simulated effects of chronic toxicity of SERT and CBZ to C. dubia individual behavior at laboratory condition. The model‘s output indicates the ecotoxicological mode of action of SERT exposure, which acts on feeding or assimilation with an effect that rapidly saturates at higher concentrations. Offspring size decreases with the toxic effects on feeding, and offspring number is thus less affected than total investment in reproduction. Consequently, CBZ affects direclty in reproduction which are captured by DEBtox model as increased embryonic hazard and reproduction cost as well as growth and maintenance costs. Furthermore, stress factor linearly increased not only with increasing chemical concentrations but also with exposure time. The DEBtox model establishes a cumulative life history consequence of multigenerational exposure to CBZ and SERT. This approach provides a tool to which to understand the effect of chemical to the individual organism and predict the population level effects in ecological risk assessment of the emerging contaminants. digital.library.unt.edu/ark:/67531/metadc407771/
Comparative Phyto-uptake Across Distribution Coefficients of Pharmaceutical Compounds and Aquatic Macrophytes: Carbamazepine and Amiodarone Uptake in Lemna Spp
Few studies have been conducted on the effectiveness of phytoremediation of pharmaceutical compounds, although the persistent and non-acutely toxic nature of many of these compounds in today's water bodies may yield an ideal application for this practice. To quantify the potential effectiveness of plant uptake, kinetic and proportional bioconcentration factors (BCFk, and BCFp, respectively) in nanograms (ng) carbamazepine and amiodarone per gram (g) wet weight plant tissue for Lemna spp. were determined utilizing a 14-day continuous flow-through study. Samples were analyzed using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) running in positive ion mode. Kinetic BCF was estimated at 0.538, while proportional BCF was estimated at 0.485. Kinetic BCF for the amiodarone study was estimated at 23.033, whereas proportional BCF was estimated at 41.340. Possible contamination of the C18 column and peristaltic pump failure may have impacted uptake results. In light of variability and current lack of research in the field, this work should be considered exploratory rather than conclusive. digital.library.unt.edu/ark:/67531/metadc283798/
Quantifying Forest Vertical Structure to Determine Bird Habitat Quality in the Greenbelt Corridor, Denton, Tx
This study presents the integration of light detection and range (LiDAR) and hyperspectral remote sensing to create a three-dimensional bird habitat map in the Greenbelt Corridor of the Elm Fork of the Trinity River. This map permits to examine the relationship between forest stand structure, landscape heterogeneity, and bird community composition. A biannual bird census was conducted at this site during the breeding seasons of 2009 and 2010. Census data combined with the three-dimensional map suggest that local breeding bird abundance, community structure, and spatial distribution patterns are highly influenced by vertical heterogeneity of vegetation surface. For local breeding birds, vertical heterogeneity of canopy surface within stands, connectivity to adjacent forest patches, largest forest patch index, and habitat (vegetation) types proved to be the most influential factors to determine bird community assemblages. Results also highlight the critical role of secondary forests to increase functional connectivity of forest patches. Overall, three-dimensional habitat descriptions derived from integrated LiDAR and hyperspectral data serve as a powerful bird conservation tool that shows how the distribution of bird species relates to forest composition and structure at various scales. digital.library.unt.edu/ark:/67531/metadc283803/
Simulating Thermal and Chemical Spills in Coupled Cooling Reservoirs
Hot water discharges and potential chemical spills are factors that threaten water quality in cooling reservoirs of chemical and power plants. In this thesis, three models are used to analyze the impact of these factors in a particular case study. digital.library.unt.edu/ark:/67531/metadc279271/
A Laboratory Study of the Asiatic Clam (Corbicula fluminea Müller) as Influenced by Substrate, Food Source and Water Type
Growth of Corbicula fluminea was monitored in the laboratory. Three experiments were conducted. Experiment I utilized three substrates and one food type. Experiment II utilized three substrates and two food types. Experiments I and II were conducted to determine if substrate type or food type effected growth. Experiment III used no substrates, one food type and was conducted to determine growth response to different types of water. Clams were maintained in three substrates: sand, gravel and clay. Clams were also maintained without substrate. Growth was monitored by measuring shell length (mm) and recording the weight (mg) of clams over a period of thirty days. At the end of the test period data were evaluated for normality and homogeneity. digital.library.unt.edu/ark:/67531/metadc279067/
Evaluation of the Use of the Bivalves Ischadium recurvum Rafinesque, 1820 and Corbicula fluminea Muller, 1774 as Biological Indicators of Relative Water Quality in Terms of Growth and Upper Temperature Tolerance
Growth of mussels under laboratory conditions was examined under various food regimes in different water types and temperatures. Growth was less than would be useful as an indicator and comparisons with field exposures were of minimal value. The effects of organophosphates on bivalves were examined via toxicity tests, tissue concentration, and by controlling exposure through the use of physical constraints. Upper temperature tolerance of both bivalve species was examined with respect to different acclimation temperatures and organophosphate exposures. Deviations from control exposures occurred at some temperatures. Copper effectively lowered the mean heat coma temperatures of C. fluminea at some concentrations, however, chlorine exposures did not alter heat coma temperature. digital.library.unt.edu/ark:/67531/metadc278827/
Biotic Factors and Temperature Tolerances via Critical Thermal Methodology in Goldfish
CTMinimum and CTMaximum were measured in 620 goldfish to determine if biotic factors, in particular starvation, condition factor and size, affect temperature tolerance. Twenty-eight days of starvation adversely affected both upper and lower temperature tolerance. Condition factor was related to upper but not lower temperature tolerance. digital.library.unt.edu/ark:/67531/metadc279125/
Plankton Community Response to Dechorination of a Municipal Effluent Discharged into the Trinity River
Chorine is used by the Village Creek Waste Water Treatment Plant to kill pathogenic microorganisms prior to discharge of the effluent into the Trinity River. The residual chlorine in the river impacted aquatic life prompting the U.S. Environmental Protection Agency in December 1990 to require dechlorination using sulfur dioxide. One pre-dechlorination and four post-dechlorination assessments of phytoplankton, periphyton, and zooplankton communities were conducted by the Institute of Applied Sciences at the University of North Texas. Dechlorination had no effect on the phytoplankton community. The periphyton community exhibited a shift in species abundance with a more even distribution of organisms among taxa. No change occurred in zooplankton species abundance, however, there was a decrease in zooplankton density following dechlorination. digital.library.unt.edu/ark:/67531/metadc278689/
Comparison of Risk Assessment-Predicted Ecologically Safe Concentrations of Azinphos-Methyl and Fenvalerate to Observed Effects on Estuarine Organisms in a South Carolina Tidal Stream Receiving Agricultural Runoff
A prospective ecological risk assessment method was developed evaluating the cumulative probabilistic impact of chemical stressors to aquatic organisms. This method was developed in response to the need to evaluate the magnitude, duration and episodic nature of chemical stressors on aquatic communities under environmental exposure scenarios. The method generates a probabilistic expression of the percent of an ecosystem's species at risk from a designated chemical exposure scenario. digital.library.unt.edu/ark:/67531/metadc277745/
An Evaluation of Fish and Macroinvertebrate Response to Effluent Dechlorination in Pecan Creek
This study evaluated the effects of chlorinated effluent discharged from the City of Denton, Texas' wastewater treatment plant on Pecan Creek's fish and macroinvertebrate assemblages, and their recovery upon dechlorination. A baseline of ecological conditions was established while chlorine was present in the effluent (June 1993- October 1993), and was evaluated again after dechlorination with sulfur dioxide (October 1993-August 1994). In situ Asiatic clam and fathead minnow ambient toxicity tests, and fish and macroinvertebrate collections were used to establish this baseline for comparison to post-dechlorination results. digital.library.unt.edu/ark:/67531/metadc278302/
An Assessment of Storm Water Toxicity from the Dallas/Fort Worth Metroplex and Denton, Texas
With the advent of national storm water regulations, municipalities with populations greater than 100,000 are required to obtain National Pollutant Discharge Elimination System Permits (NPDES) for storm water discharges. In addition to the sampling required for the permit process, the City of Fort Worth contracted with the University of North Texas' Institute of Applied Sciences to conduct acute toxicity testing using Pimephales prcmelas and Ceriodaphnia dubia on storm water samples received from the Dallas/Fort Worth Metroplex. A Toxicity Identification Evaluation (TIE) was performed on four samples that exhibited acute toxicity to C. dubia. High levels of metals as well as diazinon were some of the probable toxicants found. digital.library.unt.edu/ark:/67531/metadc278384/
A Behavioral Model for Detection of Acute Stress in Bivalves
A behavioral model for acute responses in bivalves, was developed using time series analysis for use in a real-time biomonitoring unit. Stressed bivalves closed their shell and waited for the stressful conditions to pass. Baseline data showed that group behavior of fifteen bivalves was periodic, however, individuals behaved independently. Group behavior did not change over a period of 20 minutes more than 30 percent, however, following toxic exposures the group behavior changed by more than 30 percent within 20 minutes. Behavior was mathematically modeled using autoregression to compare current and past behavior. A logical alarm applied to the behavior model determined when organisms were stressed. The ability to disseminate data collected in real time via the Internet was demonstrated. digital.library.unt.edu/ark:/67531/metadc277998/
Pretreatment Optimization of Fiberglass Manufacturing Industrial Wastewater
Wastewater effluent produced in the fiberglass manufacturing industry contains a significant amount of total suspended solids. Environmental regulations require pretreatment of effluent before it is discharged to the municipal wastewater treatment plant. Chemical precipitation by coagulation and flocculation is the method of pretreatment used at the Vetrotex CertainTeed Corporation (VCT). A treatability study was conducted to determine conditions at which the VCT Wastewater Pretreatment Plant could operate to consistently achieve a total suspended solids concentration ≤ 200-mg/L. Jar tests varied pH, polymer dosage, and ferric sulfate dosage. Total suspended solids and turbidity were measured to evaluate treatment performance. The data were used to determine an optimum set of conditions under project guidelines. Of twelve polymers screened, BPL 594 was selected as the most effective polymer. For cost efficiency in the wastewater pretreatment operation, recommendations suggested that treatment chemical injection be electronically controlled according to turbidity of the treated effluent. digital.library.unt.edu/ark:/67531/metadc277875/
Environmental Factors Influencing Chlorophyll-a Concentrations in Lake Texoma
An analysis of algal biomass measured by chlorophyll-a concentration in Lake Texoma was performed as a part of a monitoring program to develop baseline environmental data in order to detect the potential effects of engineered changes in chloride concentrations in the reservoir. This portion of the research project focused on two main research objectives. The first objective was evaluating the effect of sampling strategy on the ability to adequately reflect standing crop estimates and trends in algal biomass. Two sampling regimes utilizing replication of three versus ten samples were applied and then analyzed using a minimum detectable difference algorithm to determine the necessary magnitude of replication to represent the variation in the metric. Chlorophyll-a distribution was analyzed for zonation patterns expected in a river-run reservoir to establish the importance of representative sampling of river, transition and main lake zones of the reservoir for management decisions and trophic characterization. digital.library.unt.edu/ark:/67531/metadc278088/
Interspecific Competition Between Hygrophila polysperma and Ludwigia repens, Two Species of Importance in the Comal River, Texas
Hygrophila polysperma is a plant native to Asia that has been introduced into the Comal River, TX and is thriving while Ludwigia repens, a species native to the river appears to be declining. Both plants have similar morphologies and occupy similar habitats in the river. Two plant competition experiments were conducted to examine the competitive interactions between the two species. First, an experimental design was developed in which established Ludwigia plants were 'invaded' by sprigs of Hygrophila to determine if established Ludwigia populations would be negatively impacted by invasion. The second experiment focused on establishment and growth of sprigs of each species under three competition scenarios. Results show that the continued growth of well-established Ludwigia plants was significantly depressed by the invasion of Hygrophila in comparison with those that had not been invaded. Furthermore, the growth of Hygrophila sprigs was uninhibited by the presence of Ludwigia, but the presence of Hygrophila negatively impacted the growth of Ludwigia sprigs. There was no difference in the growth of Hygrophila sprigs whether planted alone, with Ludwigia sprigs or even if planted into stands of established Ludwigia. digital.library.unt.edu/ark:/67531/metadc278133/
Modeling the Relationship Between Golden Algae Blooms in Lake Texoma, Usa, Versus Nearby Land Use and Other Physical Variables
Pyrmnesium parvum, commonly known as golden algae, is an algal species that under certain circumstances releases toxins which can lead to fish kills and the death of other economically and ecologically important organisms. One of the major objectives of the study was to investigate whether a relationship exists between land use and Prymnesium parvum abundance in littoral sites of Lake Texoma, USA. Another objective was to investigate whether a relationship exists between other physical variables and counts of P. parvum. Lastly, developing a valid model that predicts P. parvum abundance was an objective of the study. Through stepwise regression, a small but highly significant amount of the variation in P. parvum counts was found to be explained by wetlands, soil erodibility and lake elevation. The developed model provides insight for potential golden algae management plans, such as maintaining wetlands and teaching land owners the relationship between soil erosivity and golden algae blooms. digital.library.unt.edu/ark:/67531/metadc149683/
Optimizing Scientific and Social Attributes of Pharmaceutical Take Back Programs to Improve Public and Environmental Health
Research continues to show that pharmaceutical environmental contamination has caused adverse environmental effects, with one of the most studied effects being feminization of fish exposed to pharmaceutical endocrine disruptors. Additionally, there are also public health risks associated with pharmaceuticals because in-home reserves of medications provide opportunities for accidental poisoning and intentional medication abuse. Pharmaceutical take back programs have been seen as a remedy to these concerns; however a thorough review of peer-reviewed literature and publicly available information on these programs indicates limited research has been conducted to validate these programs as a purported solution. Furthermore, there are significant data gaps on key factors relating to take back program participants. The purpose of this dissertation was therefore to address these gaps in knowledge and ultimately determine if take back programs could actually improve public and environmental health. This was accomplished by conducting social and scientific research on a take back program called Denton Drug Disposal Day (D4). Socioeconomic, demographic, and geographic characteristics of D4 participants were investigated using surveys and geographic analysis. Impacts on public health were determined by comparing medications collected at D4 events with medications reported to the North Texas Poison Center as causing adverse drug exposures in Denton County. Impacts to environmental health were determined by monitoring hydrocodone concentrations in wastewater effluent released from Denton’s wastewater treatment plant before and after D4 events. Data collected and analyzed from the D4 events and the wastewater monitoring suggests D4 events were successful in contributing to improvements in public and environmental health; however there was insufficient evidence to prove that D4 events were exclusively responsible for these improvements. An additional interesting finding was that willingness to travel to participate in D4 events was limited to a five to six mile threshold. This geographic information, combined with other findings related to socioeconomic, demographic, and risk perception characteristics of D4 participants, has the potential to help improve the effectiveness of future take back events. This would allow these programs to better meet their common goals of improving both public and environmental health, which this study has shown is achievable to some degree. digital.library.unt.edu/ark:/67531/metadc149670/
A Comparison of Mercury Localization, Speciation, and Histology in Multiple Fish Species From Caddo Lake, a Fresh Water Wetland
This work explores the metabolism of mercury in liver and spleen tissue of fish from a methylmercury contaminated wetland. Wild-caught bass, catfish, bowfin and gar were collected. Macrophage centers, which are both reactive and primary germinal centers in various fish tissues, were hypothesized to be the cause of demethylation of methylmercury in fish tissue. Macrophage centers are differentially expressed in fish tissue based on phylogenetic lineage, and are found primarily in the livers of preteleostean fish and in the spleen of teleostean fish. Histology of liver and spleen was examined in both control and wild-caught fish for pathology, size and number of macrophage centers, and for localization of mercury. Total mercury was estimated in the muscle tissue of all fish by direct mercury analysis. Selenium and mercury concentrations were examined in the livers of wild-caught fish by liquid introduction inductively coupled plasma mass spectrometry (ICP-MS). Total mercury was localized in histologic sections by laser ablation ICP-MS (LA-ICP-MS). Mercury speciation was determined for inorganic and methylmercury in liver and spleen of fish by bas chromatography-cold vapor atomic fluorescence spectroscopy (GC-CVAFS). Macrophage center tissue distribution was found to be consistent with the literature, with a predominance of centers in preteleostean liver and in spleens of teleostean fish. Little evidence histopathology was found in the livers or spleens of fish examined, but differences in morphology of macrophage centers and liver tissue across species are noted. the sole sign of liver pathology noted was increased hepatic hemosiderosis in fish with high proportions of liver inorganic mercury. Inorganic mercury was found to predominate in the livers of all fish but bass. Organic mercury was found to predominate in the spleens of all fish. Mercury was found to accumulate in macrophage centers, but concentrations of mercury in this compartment were found to vary less in relation to total mercury than hepatocyte mercury. No association was found between selenium content and inorganic mercury proportions. Overall, findings from this study to not support a primary role for macrophage centers in the demethylation of methylmercury in fish tissues. digital.library.unt.edu/ark:/67531/metadc115162/
Effects of Layer Double Hydroxide Nanoclays on the Toxicity of Copper to Daphnia Magna
Nanoparticles may affect secondary pollutants such as copper. Layer Double Hydroxides (LDH) are synthetically produced nanoparticles that adsorb copper via cation exchange. Pretreatment of copper test solutions with LDH nanoparticles followed by filtration removal of LDH nanoparticles demonstrated the smallest LDH aggregates removed the most copper toxicity. This was due to increased surface area for cation exchange relative to larger particle aggregates. Co-exposure tests of copper chloride and clay were run to determine if smaller clay particles increased copper uptake by D. magna. Coexposure treatments had lower LC50 values compared to the filtration tests, likely as a result of additive toxicity. LDH nanoclays do reduce copper toxicity in Daphnia magna and may serve as a remediation tool. digital.library.unt.edu/ark:/67531/metadc115048/
Ecological Significance and Underlying Mechanisms of Body Size Differentiation in White-tailed Deer
Body size varies according to nutritional availability, which is of ecological and evolutionary relevance. The purpose of this study is to test the hypothesis that differences in adult body size are realized by increasing juvenile growth rate for white-tailed deer (Odocoileus virginianus). Harvest records are used to construct growth rate estimates by empirical nonlinear curve fitting. Results are compared to those of previous models that include additional parameters. The rate of growth increases during the study period. Models that estimate multiple parameters may not work with harvest data in which estimates of these parameters are prone to error, which renders estimates from complex models too variable to detect inter-annual changes in growth rate that this simpler model captures digital.library.unt.edu/ark:/67531/metadc115044/
A Characterization Of Jackson Blue Spring, Jackson County, Florida
Jackson Blue is a first magnitude spring in the karst terrane of northeast Florida. Previous studies have identified inorganic fertilizer as the source of high nitrate levels in the spring. Agricultural land use and karst vulnerability make Jackson Blue a good model for conservation concerns. This work offers an aggregation of studies relating to the springshed, providing a valuable tool for planning and conservation efforts in the region. An analysis of nitrate levels and other water quality parameters within the springshed did not reveal significantly different values between agricultural and forested land use areas. Confounding factors include: high transmissivity in the aquifer, interspersed land use parcels, and fertilizer application in forested areas due to commercial pine stand activity. digital.library.unt.edu/ark:/67531/metadc103381/
Ultraviolet Radiation Tolerance in High Elevation Copepods from the Rocky Mountains of Colorado, USA
Copepods in high elevation lakes and ponds in Colorado are exposed to significant levels of ultraviolet radiation (UV), necessitating development of UV avoidance behavior and photoprotective physiological adaptations. The copepods are brightly pigmented due to accumulation of astaxanthin, a carotenoid which has photoprotective and antioxidant properties. Astaxanthin interacts with a crustacyanin-like protein, shifting its absorbance from 473 nm (hydrophobic free form, appears red) to 632 nm (protein-bound complex, appears blue). In six sites in Colorado, habitat-specific coloration patterns related to carotenoprotein complex have been observed. The objective of this study was to determine whether pigment accumulation or carotenoprotein expression has a greater effect on resistance to UV exposure. For each site, copepod tolerance to UV was assessed by survivorship during UV exposure trials. Average UV exposure was determined for each habitat. Astaxanthin profiles were generated for copepods in each site. Ability to withstand UV exposure during exposure trials was significantly different between color morphs (p < 0.0001). Red copepods were found to tolerate 2-fold greater levels of UVB than blue or mixed copepods. Additionally, red copepods have much higher levels of total astaxanthin than blue or mixed copepods (p < 0.0001) and receive a higher daily UV dose (p < 0.0003). Diaptomid carotenoprotein sequence is not homologous with that of other crustaceans in which crustacyanin has been characterized which prevented quantification of carotenoprotein transcript expression. Overall, diaptomid color morph may be an important indicator of UV conditions in high elevation lentic ecosystems. digital.library.unt.edu/ark:/67531/metadc103331/
Measuring Atmospheric Ozone and Nitrogen Dioxide Concentration by Differential Optical Absorption Spectroscopy
Access: Use of this item is restricted to the UNT Community.
The main objective was to develop a procedure based on differential optical absorption spectroscopy (DOAS) to measure atmospheric total column of ozone, using the automated instrument developed at the University of North Texas (UNT) by Nebgen in 2006. This project also explored the ability of this instrument to provide measurements of atmospheric total column nitrogen dioxide. The instrument is located on top of UNT’s Environmental Education, Science and Technology Building. It employs a low cost spectrometer coupled with fiber optics, which are aimed at the sun to collect solar radiation. Measurements taken throughout the day with this instrument exhibited a large variability. The DOAS procedure derives total column ozone from the analysis of daily DOAS Langley plots. This plot relates the measured differential column to the airmass factor. The use of such plots is conditioned by the time the concentration of ozone remains constant. Observations of ozone are typically conducted throughout the day. Observations of total column ozone were conducted for 5 months. Values were derived from both DOAS and Nebgen’s procedure and compared to satellite data. Although differences observed from both procedures to satellite data were similar, the variability found in measurements was reduced from 70 Dobson units, with Nebgen’s procedure, to 4 Dobson units, with the DOAS procedure.A methodology to measure atmospheric nitrogen dioxide using DOAS was also investigated. Although a similar approach to ozone measurements could be applied, it was found that such measurements were limited by the amount of solar radiation collected by the instrument. Observations of nitrogen dioxide are typically conducted near sunrise or sunset, when solar radiation experiences most of the atmospheric absorption. digital.library.unt.edu/ark:/67531/metadc103336/
Effect of Rancher’s Management Philosophy, Grazing Practices, and Personal Characteristics on Sustainability Indices for North Central Texas Rangeland
To assess sustainability of privately owned rangeland, a questionnaire was used to gathered data from ranches in Cooke, Montague, Clay, Wise, Parker, and Jack counties in North Central Texas. Information evaluated included: management philosophy, economics, grazing practices, environmental condition, quality of life, and demographics. Sustainability indices were created based on economic and land health indicator variables meeting a minimum Cronbach‘s alpha coefficient (α = 0.7). Hierarchical regression analysis was used to create models explaining variance in respondents’ indices scores. Five predictors explained 36% of the variance in rangeland economic sustainability index when respondents: 1) recognized management inaction has opportunity costs affecting economic viability; 2) considered forbs a valuable source of forage for wildlife or livestock; 3) believed governmental assistance with brush control was beneficial; 4) were not absentee landowners and did not live in an urban area in Texas, and; 5) valued profit, productivity, tax issues, family issues, neighbor issues or weather issues above that of land health. Additionally, a model identified 5 predictors which explained 30% of the variance for respondents with index scores aligning with greater land health sustainability. Predictors indicated: 1) fencing cost was not an obstacle for increasing livestock distribution; 2) land rest was a component of grazing plans; 3) the Natural Resource Conservation Service was used for management information; 4) fewer acres were covered by dense brush or woodlands, and; 5) management decisions were not influenced by friends. Finally, attempts to create an index and regression analysis explaining social sustainability was abandoned, due to the likely-hood of type one errors. These findings provide a new line of evidence in assessing rangeland sustainability, supporting scientific literature concerning rangeland sustainability based on ranch level indicators. Compared to measuring parameters on small plots, the use of indices allows for studying replicated whole- ranch units using rancher insight. Use of sustainability indices may prove useful in future rangeland research activities. digital.library.unt.edu/ark:/67531/metadc103289/
Integrating Selective Herbicide and Native Plant Restoration to Control Alternanthera philoxeroides (Alligator Weed)
Exotic invasive aquatic weeds such as alligator weed (Alternanthera philoxeroides) threaten native ecosystems by interfering with native plant communities, disrupting hydrology, and diminishing water quality. Development of new tools to combat invaders is important for the well being of these sensitive areas. Integrated pest management offers managers an approach that combines multiple control methods for better control than any one method used exclusively. In a greenhouse and field study, we tested the effects of selective herbicide application frequency, native competitor plant introduction, and their integration on alligator weed. In the greenhouse study, alligator weed shoot, root, and total biomass were reduced with one herbicide application, and further reduced with two. Alligator weed cumulative stem length and shoot/root ratio was only reduced after two applications. In the greenhouse, introduction of competitors did not affect alligator weed biomass, but did affect shoot/root ratio. The interaction of competitor introduction and herbicide did not significantly influence alligator weed growth in the greenhouse study. In the field, alligator weed cover was reduced after one herbicide application, but not significantly more after a second. Introduction of competitor species had no effect on alligator weed cover, nor did the interaction of competitor species and herbicide application. This study demonstrates that triclopyr amine herbicide can reduce alligator weed biomass and cover, and that two applications are more effective than one. To integrate selective herbicides and native plant introduction successfully for alligator weed control, more research is needed on the influence competition can potentially have on alligator weed growth, and the timing of herbicide application and subsequent introduction of plants. digital.library.unt.edu/ark:/67531/metadc103280/
Bioconcentration of Triclosan, Methyl-Triclosan, and Triclocarban in the Plants and Sediments of a Constructed Wetland
Triclosan and triclocarban are antimicrobial compounds added to a variety of consumer products that are commonly detected in waste water effluent. The focus of this study was to determine whether the bioconcentration of these compounds in wetland plants and sediments exhibited species specific and site specific differences by collecting field samples from a constructed wetland in Denton, Texas. The study showed that species-specific differences in bioconcentration exist for triclosan and triclocarban. Site-specific differences in bioconcentration were observed for triclosan and triclocarban in roots tissues and sediments. These results suggest that species selection is important for optimizing the removal of triclosan and triclocarban in constructed wetlands and raises concerns about the long term exposure of wetland ecosystems to these compounds. digital.library.unt.edu/ark:/67531/metadc84304/
Soil and Forest Variation by Topography and Succession Stages in the Greenbelt Corridor, Floodplain of the Elm Fork of the Trinity River, North Texas.
The Greenbelt Corridor (GBC), located in a floodplain of the Elm Fork of the Trinity River, contains patches of bottomland forest and serves as part of Lake Lewisville’s flood control backwaters. This study examines forest structure and composition in relation to topographic position and forest stage in the GBC. Thirty two plots were surveyed within various stage classes, topographic positions, and USDA soil types. Trees were identified and measured for height and DBH. Density, basal area, and importance value for each of species was calculated. Soil and vegetation were analyzed using ANOVA, Principal Component Analysis, Canonical Correlation, Canonical Correspondence Analysis and Cluster Analysis. Tests confirmed that calcium carbonate and pH show significant differences with topographic positions but not with forest stage. Potassium shows no significant difference with soil texture class. Sand shows a strong negative correlation with moisture, organic matter, organic carbon and negative correlation with calcium carbonate and potassium. Silt shows positive correlation with moisture, organic matter, organic carbon, and calcium carbonate. Clay shows strong positive correlation with moisture, organic matter and organic carbon but negative correlations with pH. Swamp privet is dominant tree types in wetland forest. Sugarberry cedar elm, green ash and American elm are widely distributed species in the study area covering low ridges, flats, and slough. In total, density is significantly different in wetland low forest and late successional stage and basal area is significantly different in early successional stage and late successional stage. Other results show that clay is negatively correlated with American elm but positively correlated with cedar elm. Organic matter and moisture shows a strong positive correlation with cedar elm. Calcium carbonate is associated with green ash and swamp privet, sand is associated with sugarberry and red mulberry, silt and pH with cedar elm and bur oak. digital.library.unt.edu/ark:/67531/metadc84268/
Characterization of Triclocarban, Methyl- Triclosan, and Triclosan in Water, Sediment, and Corbicula Fluminea (Müller, 1774) Using Laboratory, in Situ, and Field Assessments
In the last decade emerging contaminants research has intensified in a bid to answer questions about fate, transport, and effects as these chemicals as they get released into the environment. The chemicals of interest were the antimicrobials; triclocarban (TCC) and triclosan (TCS), and a metabolite of triclosan, methyl triclosan (MTCS). This research was designed to answer the question: what is the fate of these chemicals once they are released from the waste water treatment plant into receiving streams. Three different assessment methods; field monitoring, in-situ experiments, and laboratory studies were used to answer the overall question. TCS, TCC, and MTCS levels were measured in surface water, sediment and the Asiatic clam Corbicula fluminea. Field studies were conducted using four sites at Pecan Creek, Denton TX. Levels of all three chemicals in clams were up to fives orders of magnitude the water concentrations but an order of magnitude lower than in sediment. Highest sediment levels of chemicals were measured in samples from the mouth of Pecan Creek (highest organic matter). TCC was the most and TCS was the least accumulated chemicals. In-situ and lab studies both indicated that uptake of these chemicals into the clams was very rapid and measurable within 24hours of exposure. The after clams were transferred into clean water most of the compounds were depurated within 14 days. digital.library.unt.edu/ark:/67531/metadc67978/
Reproductive and Growth Responses of the Fathead Minnow (Pimephales Promelas) and Japanese Medaka (Oryzias Latipes) to the Synthetic Progestin, Norethindrone
A commonly prescribed contraceptive, the synthetic progestin norethindrone (NET) inhibits ovulation in humans. However, ecotoxicological data are lacking. Preliminary tests produced an LC50 for NET of > 1.0 mg/L (96-hour, fathead minnow (FHM) and medaka) and a NOEC of 242.0 µg/L, a LOEC of 485.0 µg/L (7-day, growth for FHM and medaka). Reproductive testing revealed a LOEC for fecundity of 24.1 ng/L (21 days, medaka). Further testing confirmed the LOEC of 24.1 ng/L while defining a NOEC of 4.7 ng/L (28 days, medaka). Effect of NET in medaka life-cycle exposure at concentrations exceeding 4.7 ng/L was evident. Few females were present in the 24.7 ng/L exposure concentration, with none in the 104.6 ng/L. Egg production was significantly reduced at concentrations exceeding 4.7 ng/L. Additionally, weight, condition factor and somatic indices were significantly different in males exposed to concentrations exceeding 4.7 ng/L. For fecundity and sexual differentiation; the NOEC was 4.7 ng/L, the LOEC 24.6 ng/L; growth and somatic indices, the NOEC was more appropriately 0.9 ng/L, with effect evident at 4.7 ng/L. Sexual differentiation of the F1 population was similar to the F0. A defining result of this test was development of exceptionally large ovaries in NET- exposed female medaka, perhaps indicative of a threshold limit for exposure in these fish. Results of FHM life-cycle testing were similar, establishing a NOEC for fecundity of 0.9 ng/L, a LOEC of 4.8 ng/L. NET's inhibitory effect on gonadal development was obvious; GSI NOEC for males, 4.8 ng/L, and histological examination confirmed the presence of intersex development at elevated concentrations. Normal physical development and growth were impaired, generally at concentrations exceeding 24.1 ng/L. At exposure concentrations exceeding 4.8 ng/L, external sexual confirmation of fish was difficult; LOEC for finspot development in females, 4.8 ng/L. Sexual determination of the 97.1 ng/L exposure group was impossible; externally, all fish appeared male and internal examination revealed no gonadal development. digital.library.unt.edu/ark:/67531/metadc68029/
Evaluation of the Developmental Effects and Bioaccumulation Potential of Triclosan and Triclocarban Using the South African Clawed Frog, Xenopus Laevis
Triclosan (TCS) and triclocarban (TCC) are antimicrobials found in U.S. surface waters. This dissertation assessed the effects of TCS and TCC on early development and investigated their potential to bioaccumulate using Xenopus laevis as a model. The effects of TCS on metamorphosis were also investigated. For 0-week tadpoles, LC50 values for TCS and TCC were 0.87 mg/L and 4.22 mg/L, respectively, and both compounds caused a significant stunting of growth. For 4-week tadpoles, the LC50 values for TCS and TCC were 0.22 mg/L and 0.066 mg/L; and for 8-week tadpoles, the LC50 values were 0.46 mg/L and 0.13 mg/L. Both compounds accumulated in Xenopus. For TCS, wet weight bioaccumulation factors (BAFs) for 0-, 4- and 8-week old tadpoles were 23.6x, 1350x and 143x, respectively. Lipid weight BAFs were 83.5x, 19792x and 8548x. For TCC, wet weight BAFs for 0-, 4- and 8-week old tadpoles were 23.4x, 1156x and 1310x. Lipid weight BAFs were 101x, 8639x and 20942x. For the time-to-metamorphosis study, TCS showed an increase in weight and snout-vent length in all treatments. Exposed tadpoles metamorphosed approximately 10 days sooner than control tadpoles. For the hind limb study, although there was no difference in weight, snout-vent length, or hind limb length, the highest treatment was more developed compared to the control. There were no differences in tail resorption rates between the treatments and controls. At relevant concentrations, neither TCS nor TCC were lethal to Xenopus prior to metamorphosis. Exposure to relatively high doses of both compounds resulted in stunted growth, which would most likely not be evident at lower concentrations. TCS and TCC accumulated in Xenopus, indicating that the compound has the potential to bioaccumulate through trophic levels. Although TCS may increase the rate of metamorphosis in terms of developmental stage, it did not disrupt thyroid function and metamorphosis in regards to limb development and tail resorption. digital.library.unt.edu/ark:/67531/metadc33178/
Habitat Fragmentation by Land-Use Change: One-Horned Rhinoceros in Nepal and Red-Cockaded Woodpecker in Texas
This research focuses on the spatial analysis of the habitat of two vulnerable species, the one-horn rhinoceros in the grasslands of southern Nepal, and the red-cockaded woodpecker in the Piney woods of southeast Texas, in the USA. A study sites relevant for biodiversity conservation was selected in each country: Chitwan National Park in Nepal, and areas near the Big Thicket National Preserve in Texas. Land-use differs in the two study areas: the first is still undergoing agrarian development while the second is in a technological phase and undergoing urbanization processes. Satellite remote sensing images were used to derive land-cover maps by supervised classification. These maps were then processed by Geographic Information Systems methods to apply habitat models based on basic resources (food and cover) and obtain habitat suitability maps. Several landscape metrics were computed to quantify the habitat characteristics especially the composition and configuration of suitable habitat patches. Sensitivity analyses were performed as the nominal values of some of the model parameters were arbitrary. Development potential probability models were used to hypothesize changes in land-use of the second study site. Various scenarios were employed to examine the impact of development on the habitat of red-cockaded woodpecker. The method derived in this study would prove beneficial to guide management and conservation of wildlife habitats. digital.library.unt.edu/ark:/67531/metadc33207/
Hepatotoxicity of Mercury to Fish
Tissue samples from spotted gar (Lepisosteus oculatus) and largemouth bass (Micropterus salmoides) were collected from Caddo Lake. Gar and bass livers were subjected to histological investigation and color analysis. Liver color (as abs at 400 nm) was significantly correlated with total mercury in the liver (r2 = 0.57, p = 0.02) and muscle (r2 = 0.58, p = 0.01) of gar. Evidence of liver damage as lipofuscin and discoloration was found in both species but only correlated with liver mercury concentration in spotted gar. Inorganic mercury was the predominant form in gar livers. In order to determine the role of mercury speciation in fish liver damage, a laboratory feeding study was employed. Zebrafish (Danio rerio) were fed either a control (0.12 ± 0.002 µg Hg.g-1 dry wt), inorganic mercury (5.03 ± 0.309 µg Hg.g-1 dry wt), or methylmercury (4.11 ± 0.146 µg Hg.g-1 dry wt) diet. After 78 days of feeding, total mercury was highest in the carcass of zebrafish fed methylmercury (12.49 ± 0.369 µg Hg.g-1 dry wt), intermediate in those fed inorganic mercury (1.09 ± 0.117 µg Hg.g-1 dry wt), and lowest in fish fed the control diet (0.48 ± 0.038 µg Hg.g-1 dry wt). Total mercury was highest in the viscera of methylmercury fed zebrafish (11.6 ± 1.86 µg Hg.g-1 dry wt), intermediate in those fed inorganic diets (4.3 ± 1.08 µg Hg.g-1 dry wt), and lowest in the control fish (below limit of detection). Total mercury was negatively associated with fish length and weight in methylmercury fed fish. Condition factor was not associated with total mercury and might not be the best measure of fitness for these fish. No liver pathologies were observed in zebrafish from any treatment. digital.library.unt.edu/ark:/67531/metadc31525/
Wind Energy-related Wildlife Impacts: Analysis and Potential Implications for Rare, Threatened and Endangered Species of Birds and Bats in Texas
Texas currently maintains the highest installed nameplate capacity and does not require publicly available post-construction monitoring studies that examine the impacts of wind energy production on surrounding fauna. This thesis examines potential wind energy impacts on avian and bat species in Texas through a three-part objective. The first two objectives synthesize literature on variables attractive to species within wind development areas and estimate impacted ranges outside of Texas, based on studies examining wind energy's environmental impacts. The third objective focuses on Texas wind development potential for interaction with rare, threatened and endangered species of birds and bats using GIS analysis with a potential hazard index (PHI) model, which addresses broad-spectrum, high risk variables examined within the first two objectives. Assuming areas with higher wind speeds have potential for wind development, PHI values were calculated for 31 avian and ten bat species, based on an analysis of species range data obtained from the Texas Parks and Wildlife Department and wind data obtained from the National Renewable Energy Laboratory. Results indicate one avian species, Tympanuchus pallidicinctus, is at high risk for wind development interaction on an annual basis, with 20 species of birds and nine species of bats at higher risk during the spring season. This macro-scale approach for identifying high risk species in Texas could be used as a model to apply to other conterminous states' preliminary evaluation of wind energy impacts. digital.library.unt.edu/ark:/67531/metadc30459/
Role of N-Acylethanolamines in Plant Defense Responses: Modulation by Pathogens and Commercial Antimicrobial Stressors
N-acyl ethanolamines (NAEs) are a class of lipids recently recognized as signaling molecules which are controlled, in part, by their degradation by fatty acid amide hydrolase (FAAH). On the basis of previous studies indicating increased NAE levels in a tobacco cell suspension-xylanase elicitor exposure system and the availability of FAAH mutants, overexpressor and knockout (OE and KO) genotypes in Arabidopsis thaliana, further roles of NAEs in A. thaliana plant defense was investigated. The commonly occurring urban antimicrobial contaminant triclosan (TCS) has been shown to suppress lipid signaling associated with plant defense responses. Thus, a second objective of this study was to determine if TCS exposure specifically interferes with NAE levels. No changes in steady state NAE profiles in A. thaliana-Pseudomonas syringae pv. syringae and A. thaliana-flagellin (bacterial peptide, flg22) challenge systems were seen despite evidence that defense responses were activated in these systems. There was a significant drop in enoyl-ACP reductase (ENR) enzyme activity, which catalyzes the last step in the fatty acid biosynthesis pathway in plants, on exposure of the seedlings to TCS at 10 ppm for 24 h and decreased reactive oxygen species (ROS) production due to flg22 in long term exposure of 0.1 ppm and short term exposure of 5 ppm. However, these responses were not accompanied by significant changes in steady state NAE profiles. digital.library.unt.edu/ark:/67531/metadc30521/
FIRST PREV 1 2 3 NEXT LAST