You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Analytical Chemistry
 Collection: UNT Theses and Dissertations
Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

Date: May 2016
Creator: Williams, Kristina
Description: The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
Contributing Partner: UNT Libraries
Fundamental Studies of Copper Corrosion in Interconnect Fabrication Process and Spectroscopic Investigation of Low-k Structures

Fundamental Studies of Copper Corrosion in Interconnect Fabrication Process and Spectroscopic Investigation of Low-k Structures

Date: December 2015
Creator: Goswami, Arindom
Description: In the first part of this dissertation, copper bimetallic corrosion and its inhibition in cleaning processes involved in interconnect fabrication is explored. In microelectronics fabrication, post chemical mechanical polishing (CMP) cleaning is required to remove organic contaminants and particles left on copper interconnects after the CMP process. Use of cleaning solutions, however, causes serious reliability issues due to corrosion and recession of the interconnects. In this study, different azole compounds are explored and pyrazole is found out to be a potentially superior Cu corrosion inhibitor, compared to the most widely used benzotriazole (BTA), for tetramethyl ammonium hydroxide (TMAH)-based post CMP cleaning solutions at pH 14. Micropattern corrosion screening results and electrochemical impedance spectroscopy (EIS) revealed that 1 mM Pyrazole in 8 wt% TMAH solution inhibits Cu corrosion more effectively than 10 mM benzotriazole (BTA) under same conditions. Moreover, water contact angle measurement results also showed that Pyrazole-treated Cu surfaces are relatively hydrophilic compared to those treated with BTA/TMAH. X-ray photoelectron spectroscopy (XPS) analysis supports Cu-Pyrazole complex formation on the Cu surface. Overall Cu corrosion rate in TMAH-based highly alkaline post CMP cleaning solution is shown to be considerably reduced to less than 1Å/min by addition of 1 mM Pyrazole. In ...
Contributing Partner: UNT Libraries
Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

Date: August 2015
Creator: Mitheo, Yannick K.
Description: In this experiment, more than one hundred volatile organic compounds were analyzed with the gas chromatograph. Six capillary columns ZB wax plus, ZB 35, TR1MS, TR5, TG5MS and TG1301MS with different polarities have been used for separation of compounds and illicit drugs. The Abraham solvation model has five solute descriptors. The solute descriptors are E, S, A, B, L (or V). Based on the six stationary phases, six equations were constructed as a training set for each of the six columns. The six equations served to calculate the solute descriptors for a set of illicit drugs. Drugs studied are nicotine (S= 0.870, A= 0.000, B= 1.073), oxycodone(S= 2.564. A= 0.286, B= 1.706), methamphetamine (S= 0.297, A= 1.570, B= 1.009), heroin (S=2.224, A= 0.000, B= 2.136) and ketamine (S= 1.005, A= 0.000, B= 1.126). The solute property of Abraham solvation model is represented as a logarithm of retention time, thus the logarithm of experimental and calculated retention times is compared.
Contributing Partner: UNT Libraries
A Study of Silver: an Alternative Maldi Matrix for Low Weight Compounds and Mass Spectrometry Imaging

A Study of Silver: an Alternative Maldi Matrix for Low Weight Compounds and Mass Spectrometry Imaging

Date: May 2014
Creator: Walton, Barbara Lynn
Description: Soft-landing ion mobility has applicability in a variety of areas. The ability to produce material and collect a sufficient amount for further analysis and applications is the key goal of this technique. Soft-landing ion mobility has provided a way to deposit material in a controllable fashion, and can be tailored to specific applications. Changing the conditions at which soft-landing ion mobility occurs effects the characteristics of the resulting particles (size, distribution/coverage on the surface). Longer deposition times generated more material on the surface; however, higher pressures increased material loss due to diffusion. Larger particles were landed when using higher pressures, and increased laser energy at ablation. The utilization of this technique for the deposition of silver clusters has provided a solvent free matrix application technique for MALDI-MS. The low kinetic energy of incident ions along with the solvent free nature of soft-landing ion mobility lead to a technique capable of imaging sensitive samples and low mass analysis. The lack of significant interference as seen by traditional organic matrices is avoided with the use of metallic particles, providing a major enhancement in the ability to analyze low mass compounds by MALDI.
Contributing Partner: UNT Libraries
Analysis of PAH and PCB Emissions from the Combustion of dRDF and the Nondestructive Analysis of Stamp Adhesives

Analysis of PAH and PCB Emissions from the Combustion of dRDF and the Nondestructive Analysis of Stamp Adhesives

Date: May 1989
Creator: Poslusny, Matthew
Description: This work includes two unrelated areas of research. The first portion of this work involved combusting densified refuse derived fuel (dRDF) with coal and studying the effect that Ca(0H)2 binder had on reducing polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) emissions. The second area of work was directed at developing nondestructive infrared techniques in order to aid in the analysis of postage stamp adhesives. With Americans generating 150-200 million tons a year of Municipal Solid Waste (MSW) and disposing of nearly ninety percent of it in landfills, it is easy to understand why American landfills are approaching capacity. One alternative to landfilling is to process the MSW into RDF. There are technical and environmental problems associated with RDF. This work provides some answers concerning the amount of PAH and PCB emissions generated via the combustion of RDF with coal. It was found that the Ca(OH)2 binder greatly reduced both the PAH and the PCB emissions. In fact, PAH emissions at the ten-percent level were reduced more by using the binder than by the pollution control equipment. If the Ca(0H)2 binder can reduce not only PAH and PCB emissions, but also other noxious emissions, such as acid gases or dioxin, ...
Contributing Partner: UNT Libraries
Model Development for the Catalytic Calcination of Calcium Carbonate

Model Development for the Catalytic Calcination of Calcium Carbonate

Date: December 1987
Creator: Huang, Jin-Mo
Description: Lime is one of the largest manufactured chemicals in the United States. The conversion of calcium carbonate into calcium oxide is an endothermic reaction and requires approximately two to four times the theoretical quantity of energy predicted from thermodynamic analysis. With the skyrocketing costs of fossil fuels, how to decrease the energy consumption in the calcination process has become a very important problem in the lime industry. In the present study, many chemicals including lithium carbonate, sodium carbonate, potassium carbonate, lithium chloride, magnesium chloride, and calcium chloride have been proved to be the catalysts to enhance the calcination rate of calcium carbonate. By mixing these chemicals with pure calcium carbonate, these additives can increase the calcination rate of calcium carbonate at constant temperatures; also, they can complete the calcination of calcium carbonate at relatively low temperatures. As a result, the energy required for the calcination of calcium carbonate can be decreased. The present study has aimed at developing a physical model, which is called the extended shell model, to explain the results of the catalytic calcination. In this model, heat transfer and mass transfer are two main factors used to predict the calcination rate of calcium carbonate. By using the ...
Contributing Partner: UNT Libraries
Methods Development for Simultaneous Determination of Anions and Cations by Ion Chromatography

Methods Development for Simultaneous Determination of Anions and Cations by Ion Chromatography

Date: May 1987
Creator: Jones, Vonda K. (Vonda Kaye)
Description: The problem with which this research is concerned is the determination of inorganic anions and cations with single injection ion chromatography. Direct detection of the separated analyte ions occurs after the analyte ions have passed through ion-exchange resins where they are separated according to their affinity for the ion-exchange resin active sites. The techniques involve the use of essentially a non-suppressed ion chromatographic system followed by a suppressed ion chromatographic system. With this system it is possible to accomplish both qualitative and quantitative determinations.
Contributing Partner: UNT Libraries
Calcium Silicates: Glass Content and Hydration Behavior

Calcium Silicates: Glass Content and Hydration Behavior

Date: August 1987
Creator: Zgambo, Thomas P. (Thomas Patrick)
Description: Pure, MgO doped and B2C3 doped monocalcium, dicalcium, and tricalcium silicates were prepared with different glass contents. Characterization of the anhydrous materials was carried out using optical microscopy, infrared absorption spectroscopy, and X-ray powder diffraction. The hydration of these compounds was studied as a function of the glass contents. The hydration studies were conducted at 25°C. Water/solid ratios of 0.5, 1, 10, and 16 were used for the various experiments. The hydration behavior was monitored through calorimetry, conductometry, pH measurements, morphological developments by scanning electron microscopy, phase development by X-ray powder diffraction, and percent combined water by thermogravimetry. A highly sensitive ten cell pseudo-adiabatic microcalorimeter was designed and constructed for early hydration studies. Conductometry was found to be of great utility in monitoring the hydration of monocalcium silicate and the borate doped dicalcium silicates.
Contributing Partner: UNT Libraries
The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal

The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal

Date: August 1990
Creator: Moore, Paul, 1962-
Description: The United States leads the world in per capita production of Municipal Solid Waste (MSW), generating approximately 200 million tons per year. By 2000 A.D. the US EPA predicts a 20% rise in these numbers. Currently the major strategies of MSW disposal are (i) landfill and (ii) incineration. The amount of landfill space in the US is on a rapid decline. There are -10,000 landfill sites in the country, of which only 65-70% are still in use. The Office of Technology Assessment (OTA) predicts an 80% landfill closure rate in the next 20 years. The development of a viable energy resource from MSW, in the form of densified Refuse Derived Fuel (dRDF), provides solutions to the problems of MSW generation and fossil fuel depletions. Every 2 tons of MSW yields approximately 1 ton of dRDF. Each ton of dRDF has an energy equivalent of more than two barrels of oil. At current production rates the US is "throwing away" over 200,000,000 barrels of oil a year. In order to be considered a truly viable product dRDF must be extensively studied; in terms of it's cost of production, it's combustion properties, and it's potential for environmental pollution. In 1987 a research ...
Contributing Partner: UNT Libraries
Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Date: August 1994
Creator: Cheek, Roger W. (Roger Warren)
Description: Tungsten metal is used as an electrical conductor in many modern microelectronic devices. One of the primary motivations for its use is that it can be deposited in thin films by chemical vapor deposition (CVD). CVD is a process whereby a thin film is deposited on a solid substrate by the reaction of a gas-phase molecular precursor. In the case of tungsten chemical vapor deposition (W-CVD) this precursor is commonly tungsten hexafluoride (WF6) which reacts with an appropriate reductant to yield metallic tungsten. A useful characteristic of the W-CVD chemical reactions is that while they proceed rapidly on silicon or metal substrates, they are inhibited on insulating substrates, such as silicon dioxide (Si02). This selectivity may be exploited in the manufacture of microelectronic devices, resulting in the formation of horizontal contacts and vertical vias by a self-aligning process. However, reaction parameters must be rigorously controlled, and even then tungsten nuclei may form on neighboring oxide surfaces after a short incubation time. Such nuclei can easily cause a short circuit or other defect and thereby render the device inoperable. If this loss of selectivity could be controlled in the practical applications of W-CVD, thereby allowing the incorporation of this technique into ...
Contributing Partner: UNT Libraries
Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Date: May 2012
Creator: Wang, Zhouxing
Description: The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict ...
Contributing Partner: UNT Libraries
Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Yuan, Qiuhua
Description: The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending bands at ~3575 and ~630 cm-1, respectively. The SEM shows an adhesive, crack free morphology for the double-layer coating surface of the samples sintered in a vacuum furnace. 2. Silver/polymer/clay nanocomposites. Silver nanoparticles were prepared in layered clay mineral (montmorillonite)/polymer (PVP: poly (vinyl pyrrolidone)) suspension by an electrochemical approach. The silver particles formed in the bulk suspension were stabilized by the PVP and partially exfoliated clay platelets, which acted as protective colloids to prevent coagulation of silver nanoparticles together. The synthesized silver nanoparticles/montmorillonite/PVP composite was characterized and identified by XRD, SEM, and TEM (transmission electron microscopy) measurements. 3. Ce-doped lead ...
Contributing Partner: UNT Libraries
The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research

The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research

Access: Use of this item is restricted to the UNT Community.
Date: August 2005
Creator: Wang, Chen
Description: Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V versus Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which involves sticking the scotch tape on the sample, then peeling off the tape and observing if the copper film peels off or not. Characterization by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicated that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics does not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small ...
Contributing Partner: UNT Libraries
Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Access: Use of this item is restricted to the UNT Community.
Date: August 2005
Creator: Lei, Jipu
Description: An iodine surface layer has been prepared on Ru(poly) and Ru(0001) electrodes by exposure to iodine vapor in UHV and polarizing in a 0.1 M HClO4/0.005 M KI solution, respectively. A saturation coverage of I on a Ru(poly) electrode passivates the Ru surface against significant hydroxide, chemisorbed oxygen or oxide formation during exposure to water vapor over an electrochemical cell in a UHV-electrochemistry transfer system. Immersion of I-Ru(poly) results in greater hydroxide and chemisorbed oxygen formation than water vapor exposure, but an inhibition of surface oxide formation relative that of the unmodified Ru(poly) surface is still observed. Studies with combined electrochemical and XPS techniques show that the iodine surface adlayer remained on top of the surface after cycles of overpotential electrodeposition/dissolution of copper on both Ru(poly) and Ru(0001) electrodes. These results indicate the potential bifunctionality of iodine layer to both passivate the Ru surface in the microelectronic processing and to act as a surfactant for copper electrodeposition. The electrodeposition of Cu on Ru(0001) or polycrystalline Ru was studied using XPS with combined ultrahigh vacuum/electrochemistry methodology (UHV-EC) in 0.1 M HClO4 with Cu(ClO4)2 concentrations ranging from 0.005 M to 0.0005 M, and on polycrystalline Ru in a 0.05M H2SO4/0.005 M CuSO4/0.001 ...
Contributing Partner: UNT Libraries
Electrodeposition of adherent copper film on unmodified tungsten.

Electrodeposition of adherent copper film on unmodified tungsten.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Wang, Chen
Description: Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V vs Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which stick the scotch tape on the sample, then peel off the tape and see if the copper film peels off or not. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicate that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics do not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small ...
Contributing Partner: UNT Libraries
Passivation effects of surface iodine layer on tantalum for the electroless copper deposition.

Passivation effects of surface iodine layer on tantalum for the electroless copper deposition.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Liu, Jian
Description: The ability to passivate metallic surfaces under non-UHV conditions is not only of fundamental interests, but also of growing practical importance in catalysis and microelectronics. In this work, the passivation effect of a surface iodine layer on air-exposed Ta for the copper electroless deposition was investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Although the passivation effect was seriously weakened by the prolonged air exposure, iodine passivates the Ta substrate under brief air exposure conditions so that enhanced copper wetting and adhesion are observed on I-passivated Ta relative to the untreated surface.
Contributing Partner: UNT Libraries
Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Access: Use of this item is restricted to the UNT Community.
Date: May 2003
Creator: Arunagiri, Tiruchirapalli Natarajan
Description: An extremely facile and novel method called spontaneous deposition, to deposit noble metal nanoparticles on a most stable form of carbon (C) i.e. diamond is presented. Nanometer sized particles of such metals as platinum (Pt), palladium (Pd), gold (Au), copper (Cu) and silver (Ag) could be deposited on boron-doped (B-doped) polycrystalline diamond films grown on silicon (Si) substrates, by simply immersing the diamond/Si sample in hydrofluoric acid (HF) solution containing ions of the corresponding metal. The electrons for the reduction of metal ions came from the Si back substrate. The diamond/Si interfacial ohmic contact was of paramount importance to the observation of the spontaneous deposition process. The metal/diamond (M/C) surfaces were investigated using Raman spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffractometry (XRD). The morphology (i.e. size and distribution) of metal nanoparticles deposits could be controlled by adjusting the metal ion concentration, HF concentration and deposition time. XRD data indicate the presence of textured and strained crystal lattices of Pd for different Pd/C morphologies, which seem to influence the electrocatalytic oxidation of formaldehyde (HCHO). The sensitivity of electrocatalytic reactions to surface crystal structure implies that M/C could be fabricated for specific electrocatalytic applications. The research also ...
Contributing Partner: UNT Libraries
Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects

Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects

Date: August 2006
Creator: Stovall, Dawn Michele
Description: Experimental mole fraction solubilities of several carboxylic acids (2-methoxybenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid,2-methylbenzoic acid and ibuprofen) and 9-fluorenone, thianthrene and xanthene were measured in a wide range of solvents of varying polarity and hydrogen-bonding characteristics. Results of these measurements were used to calculate gas-to-organic solvent and water-to-organic solvent solubility ratios, which were then substituted into known Abraham process partitioning correlations. The molecular solute descriptors that were obtained as the result of these computations described the measured solubility data to within an average absolute deviation of 0.2 log units. The calculated solute descriptors also enable one to estimate many chemically, biologically and pharmaceutically important properties for the ten solutes studied using published mathematical correlations.
Contributing Partner: UNT Libraries
The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels.

The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels.

Date: August 2006
Creator: Crouch, Stephen Wallace
Description: Homogeneous hydrogels made of an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAm) and poly(acrylic acid) (PAAc) are synthesized by a two-step process; first making PNIPAm hydrogels and then interpenetrating acrylic acid throughout the hydrogel through polymerization. The kinetic growth of the IPN is plotted and an equation is fitted to the data. When diluted to certain concentrations in water, the hydrogels show reversible, inverse thermal gelation at about 34°C. This shows unique application to the medical field, as the transition is just below body temperature. A drug release experiment is performed using high molecular weight dyes, and a phase diagram is created through observation of the purified, concentrated gel at varying concentrations and temperatures.
Contributing Partner: UNT Libraries
FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface

FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface

Date: December 2007
Creator: Pillai, Karthikeyan
Description: Plasma polymerization techniques were used to synthesize and deposit hydrogel on silicon (Si) substrate. Hydrogel is a network of polymer chains that are water-insoluble and has a high degree of flexibility. The various fields of applications of hydrogel include drug release, biosensors and tissue engineering etc. Hydrogel synthesized from different monomers possess a common property of moisture absorption. In this work two monomers were used namely 1-amino-2-propanol (1A2P) and 2(ethylamino)ethanol (2EAE) to produce polymer films deposited on Si ATR crystal. Their moisture uptake property was tested using FTIR-ATR technique. This was evident by the decrease in -OH band in increasing N2 purging time of the films. Secondly, two monomer compounds namely vinyl acetic acid and glycidyl methacrylate which have both amine and carboxylic groups are used as solid surface for the immobilization of bovine serum albumin (BSA). Pulsed plasma polymerization was used to polymerize these monomers with different duty cycles. Initial works in this field were all about protein surface adsorption. But more recently, the emphasis is on covalent bonding of protein on to the surface. This immobilization of protein on solid surface has a lot of applications in the field of biochemical studies. The polymerization of vinyl acetic acid ...
Contributing Partner: UNT Libraries
Study of Ruthenium and Ruthenium Oxide's Electrochemical Properties and Application as a Copper Diffusion Barrier

Study of Ruthenium and Ruthenium Oxide's Electrochemical Properties and Application as a Copper Diffusion Barrier

Date: August 2005
Creator: Zhang, Yibin
Description: As a very promising material of copper diffusion barrier for next generation microelectronics, Ru has already obtained a considerable attention recently. In this dissertation, we investigated ruthenium and ruthenium oxide electrochemical properties and the application as a copper diffusion barrier. Cu under potential deposition (UPD) on the RuOx formed electrochemically was first observed. Strong binding interaction, manifesting by the observed Cu UPD process, exists between Cu and Ru as well as its conductive ruthenium oxide. Since UPD can be conformally formed on the electrode surface, which enable Ru and RuOx has a potential application in the next generation anode. The [Cl-] and pH dependent experiment were conducted, both of them will affect UPD Cu on Ru oxide. We also found the Cu deposition is thermodynamically favored on RuOx formed electrochemically. We have studied the Ru thin film (5nm) as a copper diffusion barrier. It can successfully block Cu diffusion annealed at 300 oC for 10min under vacuum, and fail at 450 oC. We think the silicidation process at the interface between Ru and Si. PVD Cu/Ru/Si and ECP Cu/Ru/Si were compared each other during copper diffusion study. It was observed that ECP Cu is easy to diffuse through Ru barrier. ...
Contributing Partner: UNT Libraries
Metal Oxide Reactions in Complex Environments: High Electric Fields and Pressures above Ultrahigh Vacuum

Metal Oxide Reactions in Complex Environments: High Electric Fields and Pressures above Ultrahigh Vacuum

Date: August 2005
Creator: Qin, Feili
Description: Metal oxide reactions at metal oxide surfaces or at metal-metal oxide interfaces are of exceptional significance in areas such as catalysis, micro- and nanoelectronics, chemical sensors, and catalysis. Such reactions are frequently complicated by the presence of high electric fields and/or H2O-containing environments. The focus of this research was to understand (1) the iron oxide growth mechanism on Fe(111) at 300 K and 500 K together with the effect of high electric fields on these iron oxide films, and (2) the growth of alumina films on two faces of Ni3Al single crystal and the interaction of the resulting films with water vapor under non-UHV conditions. These studies were conducted with AES, LEED, and STM. XPS was also employed in the second study. Oxidation of Fe(111) at 300 K resulted in the formation of Fe2O3 and Fe3O4. The substrate is uniformly covered with an oxide film with relatively small oxide islands, i.e. 5-15 nm in width. At 500 K, Fe3O4 is the predominant oxide phase formed, and the growth of oxide is not uniform, but occurs as large islands (100 - 300 nm in width) interspersed with patches of uncovered substrate. Under the stress of STM induced high electric fields, dielectric ...
Contributing Partner: UNT Libraries
Process Evaluation and Characterization of Tungsten Nitride as a Diffusion Barrier for Copper Interconnect Technology

Process Evaluation and Characterization of Tungsten Nitride as a Diffusion Barrier for Copper Interconnect Technology

Date: August 2005
Creator: Ekstrom, Bradley Mitsuharu
Description: The integration of copper (Cu) and dielectric materials has been outlined in the International Technology Roadmap for Semiconductors (ITRS) as a critical goal for future microelectronic devices. A necessity toward achieving this goal is the development of diffusion barriers that resolve the Cu and dielectric incompatibility. The focus of this research examines the potential use of tungsten nitride as a diffusion barrier by characterizing the interfacial properties with Cu and evaluating its process capability for industrial use. Tungsten nitride (β-W2N) development has been carried out using a plasma enhanced chemical vapor deposition (PECVD) technique that utilizes tungsten hexafluoride (WF6), nitrogen (N2), hydrogen (H2), and argon (Ar). Two design of experiments (DOE) were performed to optimize the process with respect to film stoichiometry, resistivity and uniformity across a 200 mm diameter Si wafer. Auger depth profiling showed a 2:1 W:N ratio. X-ray diffraction (XRD) showed a broad peak centered on the β-W2N phase. Film resistivity was 270 mohm-cm and film uniformity < 3 %. The step coverage (film thickness variance) across a structured etched dielectric (SiO2, 0.35 mm, 3:1 aspect ratio) was > 44 %. Secondary ion mass spectroscopy (SIMS) measurements showed good barrier performance for W2N between Cu and SiO2 ...
Contributing Partner: UNT Libraries
Interfacial Study of Copper Electrodeposition with the Electrochemical Quartz Crystal Microbalance (EQCM)

Interfacial Study of Copper Electrodeposition with the Electrochemical Quartz Crystal Microbalance (EQCM)

Date: May 2005
Creator: Ojeda Mota, Oscar Ulises
Description: The electrochemical quartz crystal microbalance (EQCM) has been proven an effective mean of monitoring up to nano-scale mass changes related to electrode potential variations at its surface. The principles of operation are based on the converse piezoelectric response of quartz crystals to mass variations on the crystal surface. In this work, principles and operations of the EQCM and piezo-electrodes are discussed. A conductive oxide, ruthenium oxide (RuO2) is a promising material to be used as a diffusion barrier for metal interconnects. Characterization of copper underpotential deposition (UPD) on ruthenium and RuO2 electrodes by means of electrochemical methods and other spectroscopic methods is presented. Copper electrodeposition in platinum and ruthenium substrates is investigated at pH values higher than zero. In pH=5 solutions, the rise in local pH caused by the reduction of oxygen leads to the formation of a precipitate, characterized as posnjakite or basic copper sulfate by means of X-ray electron spectroscopy and X-ray diffraction. The mechanism of formation is studied by means of the EQCM, presenting this technique as a powerful in-situ sensing device.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST