This system will be undergoing maintenance Monday, January 23 from 8:00 AM to 12:00 PM CST.

  You limited your search to:

  Partner: UNT Libraries
 Department: Department of Mathematics
 Decade: 1990-1999
 Collection: UNT Theses and Dissertations
Weakly Dense Subsets of Homogeneous Complete Boolean Algebras

Weakly Dense Subsets of Homogeneous Complete Boolean Algebras

Date: August 1990
Creator: Bozeman, Alan Kyle
Description: The primary result from this dissertation is following inequality: d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}) in ZFC, where B is a homogeneous complete Boolean algebra, d(B) is the density, wd(B) is the weak density, and c(B) is the cellularity of B. Chapter II of this dissertation is a general overview of homogeneous complete Boolean algebras. Assuming the existence of a weakly inaccessible cardinal, we give an example of a homogeneous complete Boolean algebra which does not attain its cellularity. In chapter III, we prove that for any integer n > 1, wd_2(B) = wd_n(B). Also in this chapter, we show that if X⊂B is κ—weakly dense for 1 < κ < sat(B), then sup{wd_κ(B):κ < sat(B)} = d(B). In chapter IV, we address the following question: If X is weakly dense in a homogeneous complete Boolean algebra B, does there necessarily exist b € B\{0} such that {x∗b: x ∈ X} is dense in B|b = {c € B: c ≤ b}? We show that the answer is no for collapsing algebras. In chapter V, we give new proofs to some well known results concerning supporting antichains. A direct consequence of these results is the relation c(B) < wd(B), ...
Contributing Partner: UNT Libraries
Uniqueness of Positive Solutions for Elliptic Dirichlet Problems

Uniqueness of Positive Solutions for Elliptic Dirichlet Problems

Date: December 1990
Creator: Ali, Ismail, 1961-
Description: In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB, where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order. We also present a regularity result on linear elliptic equation where a coefficient has critical growth.
Contributing Partner: UNT Libraries
Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Date: December 1998
Creator: Richardson, Peter A. (Peter Adolph), 1955-
Description: In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.
Contributing Partner: UNT Libraries
Minimality of the Special Linear Groups

Minimality of the Special Linear Groups

Date: December 1997
Creator: Hayes, Diana Margaret
Description: Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear group SLn(F) with the usual topology induced by F is a minimal topological group. This is accomplished by first proving the minimality of the upper triangular group in SLn(F). The proof for the upper triangular group uses an induction argument on a chain of upper triangular subgroups and relies on general results for locally compact topological groups, quotient groups, and subgroups. Minimality of SLn(F) is concluded by appealing to the associated Lie group decomposition as the product of a compact group and an upper triangular group. We also prove the universal minimality of homeomorphism groups of one dimensional manifolds, and we give a new simple proof of the universal minimality of S∞.
Contributing Partner: UNT Libraries
Topics in Fractal Geometry

Topics in Fractal Geometry

Date: August 1994
Creator: Wang, JingLing
Description: In this dissertation, we study fractal sets and their properties, especially the open set condition, Hausdorff dimensions and Hausdorff measures for certain fractal constructions.
Contributing Partner: UNT Libraries
Multifractal Measures

Multifractal Measures

Date: May 1994
Creator: Olsen, Lars
Description: The purpose of this dissertation is to introduce a natural and unifying multifractal formalism which contains the above mentioned multifractal parameters, and gives interesting results for a large class of natural measures. In Part 2 we introduce the proposed multifractal formalism and study it properties. We also show that this multifractal formalism gives natural and interesting results when applied to (nonrandom) graph directed self-similar measures in Rd and "cookie-cutter" measures in R. In Part 3 we use the multifractal formalism introduced in Part 2 to give a detailed discussion of the multifractal structure of random (and hence, as a special case, non-random) graph directed self-similar measures in R^d.
Contributing Partner: UNT Libraries
Properties of Bicentric Circles for Three-Sided Polygons

Properties of Bicentric Circles for Three-Sided Polygons

Date: August 1998
Creator: Heinlein, David J. (David John)
Description: We define and construct bicentric circles with respect to three-sided polygons. Then using inherent properties of these circles, we explore both tangent properties, and areas generated from bicentric circles.
Contributing Partner: UNT Libraries
Aspects of Universality in Function Iteration

Aspects of Universality in Function Iteration

Date: December 1991
Creator: Taylor, John (John Allen)
Description: This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.
Contributing Partner: UNT Libraries
π-regular Rings

π-regular Rings

Date: May 1993
Creator: Badawi, Ayman R.
Description: The dissertation focuses on the structure of π-regular (regular) rings.
Contributing Partner: UNT Libraries
Sufficient Conditions for Uniqueness of Positive Solutions and Non Existence of Sign Changing Solutions for Elliptic Dirichlet Problems

Sufficient Conditions for Uniqueness of Positive Solutions and Non Existence of Sign Changing Solutions for Elliptic Dirichlet Problems

Date: August 1995
Creator: Hassanpour, Mehran
Description: In this paper we study the uniqueness of positive solutions as well as the non existence of sign changing solutions for Dirichlet problems of the form $$\eqalign{\Delta u + g(\lambda,\ u) &= 0\quad\rm in\ \Omega,\cr u &= 0\quad\rm on\ \partial\Omega,}$$where $\Delta$ is the Laplace operator, $\Omega$ is a region in $\IR\sp{N}$, and $\lambda>0$ is a real parameter. For the particular function $g(\lambda,\ u)=\vert u\vert\sp{p}u+\lambda$, where $p={4\over N-2}$, and $\Omega$ is the unit ball in $\IR\sp{N}$ for $N\ge3$, we show that there are no sign changing solutions for small $\lambda$ and also we show that there are no large sign changing solutions for $\lambda$ in a compact set. We also prove uniqueness of positive solutions for $\lambda$ large when $g(\lambda,\ u)=\lambda f(u)$, where f is an increasing, sublinear, concave function with f(0) $<$ 0, and the exterior boundary of $\Omega$ is convex. In establishing our results we use a number of methods from non-linear functional analysis such as rescaling arguments, methods of order, estimation near the boundary, and moving plane arguments.
Contributing Partner: UNT Libraries
Generalized Function Solutions to Nonlinear Wave Equations with Distribution Initial Data

Generalized Function Solutions to Nonlinear Wave Equations with Distribution Initial Data

Date: August 1996
Creator: Kim, Jongchul
Description: In this study, we consider the generalized function solutions to nonlinear wave equation with distribution initial data. J. F. Colombeau shows that the initial value problem u_tt - Δu = F(u); m(x,0) = U_0; u_t (x,0) = i_1 where the initial data u_0 and u_1 are generalized functions, has a unique generalized function solution u. Here we take a specific F and specific distributions u_0, u_1 then inspect the generalized function representatives for the initial value problem solution to see if the generalized function solution is a distribution or is more singular. Using the numerical technics, we show for specific F and specific distribution initial data u_0, u_1, there is no distribution solution.
Contributing Partner: UNT Libraries
Universal Branched Coverings

Universal Branched Coverings

Date: May 1993
Creator: Tejada, Débora
Description: In this paper, the study of k-fold branched coverings for which the branch set is a stratified set is considered. First of all, the existence of universal k-fold branched coverings over CW-complexes with stratified branch set is proved using Brown's Representability Theorem. Next, an explicit construction of universal k-fold branched coverings over manifolds is given. Finally, some homotopy and homology groups are computed for some specific examples of Universal k-fold branched coverings.
Contributing Partner: UNT Libraries
Existence of Many Sign Changing Non Radial Solutions for Semilinear Elliptic Problems on Annular Domains

Existence of Many Sign Changing Non Radial Solutions for Semilinear Elliptic Problems on Annular Domains

Date: August 1998
Creator: Finan, Marcel Basil
Description: The aim of this work is the study of the existence and multiplicity of sign changing nonradial solutions to elliptic boundary value problems on annular domains.
Contributing Partner: UNT Libraries
Polish Spaces and Analytic Sets

Polish Spaces and Analytic Sets

Date: August 1997
Creator: Muller, Kimberly (Kimberly Orisja)
Description: A Polish space is a separable topological space that can be metrized by means of a complete metric. A subset A of a Polish space X is analytic if there is a Polish space Z and a continuous function f : Z —> X such that f(Z)= A. After proving that each uncountable Polish space contains a non-Borel analytic subset we conclude that there exists a universally measurable non-Borel set.
Contributing Partner: UNT Libraries
Physical Motivation and Methods of Solution of Classical Partial Differential Equations

Physical Motivation and Methods of Solution of Classical Partial Differential Equations

Date: August 1995
Creator: Thompson, Jeremy R. (Jeremy Ray)
Description: We consider three classical equations that are important examples of parabolic, elliptic, and hyperbolic partial differential equations, namely, the heat equation, the Laplace's equation, and the wave equation. We derive them from physical principles, explore methods of finding solutions, and make observations about their applications.
Contributing Partner: UNT Libraries
On Groups of Positive Type

On Groups of Positive Type

Date: August 1995
Creator: Moore, Monty L.
Description: We describe groups of positive type and prove that a group G is of positive type if and only if G admits a non-trivial partition. We completely classify groups of type 2, and present examples of other groups of positive type as well as groups of type zero.
Contributing Partner: UNT Libraries
Multifractal Analysis of Parabolic Rational Maps

Multifractal Analysis of Parabolic Rational Maps

Date: August 1998
Creator: Byrne, Jesse William
Description: The investigation of the multifractal spectrum of the equilibrium measure for a parabolic rational map with a Lipschitz continuous potential, φ, which satisfies sup φ < P(φ) x∈J(T) is conducted. More specifically, the multifractal spectrum or spectrum of singularities, f(α) is studied.
Contributing Partner: UNT Libraries
A Topological Uniqueness Result for the Special Linear Groups

A Topological Uniqueness Result for the Special Linear Groups

Date: August 1997
Creator: Opalecky, Robert Vincent
Description: The goal of this paper is to establish the dependency of the topology of a simple Lie group, specifically any of the special linear groups, on its underlying group structure. The intimate relationship between a Lie group's topology and its algebraic structure dictates some necessary topological properties, such as second countability. However, the extent to which a Lie group's topology is an "algebraic phenomenon" is, to date, still not known.
Contributing Partner: UNT Libraries
Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints

Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints

Date: August 1994
Creator: Garza, Javier, 1965-
Description: The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the region bounded by two coaxial cylinders of height 1 with the outer cylinder having radius 1 and the inner having radius ρ. The problem is to find a mapping, u, from Ω into R^3 which agrees with a given function v on the surfaces of the cylinders and minimizes the energy function over the set of functions in the Sobolev space H^(1,2)(Ω; R^3) having norm 1 almost everywhere. In the variational formulation, the norm 1 condition is emulated by a constraint function B. The direction of descent studied here is given by a projected gradient, called a B-gradient, which involves the projection of a Sobolev gradient onto the tangent space for B. A numerical implementation of the algorithm, the results of which agree with the theoretical results and which is independent of any strong properties of the domain, is described. In chapter 2, the Sobolev space setting and a significant projection in the theory of Sobolev gradients are discussed. The variational formulation is introduced in Chapter 3, where the issues of differentiability and existence of ...
Contributing Partner: UNT Libraries
Plane Curves, Convex Curves, and Their Deformation Via the Heat Equation

Plane Curves, Convex Curves, and Their Deformation Via the Heat Equation

Date: August 1998
Creator: Debrecht, Johanna M.
Description: We study the effects of a deformation via the heat equation on closed, plane curves. We begin with an overview of the theory of curves in R3. In particular, we develop the Frenet-Serret equations for any curve parametrized by arc length. This chapter is followed by an examination of curves in R2, and the resultant adjustment of the Frenet-Serret equations. We then prove the rotation index for closed, plane curves is an integer and for simple, closed, plane curves is ±1. We show that a curve is convex if and only if the curvature does not change sign, and we prove the Isoperimetric Inequality, which gives a bound on the area of a closed curve with fixed length. Finally, we study the deformation of plane curves developed by M. Gage and R. S. Hamilton. We observe that convex curves under deformation remain convex, and simple curves remain simple.
Contributing Partner: UNT Libraries
Cycles and Cliques in Steinhaus Graphs

Cycles and Cliques in Steinhaus Graphs

Date: December 1994
Creator: Lim, Daekeun
Description: In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian.
Contributing Partner: UNT Libraries
Property (H*) and Differentiability in Banach Spaces

Property (H*) and Differentiability in Banach Spaces

Date: August 1993
Creator: Obeid, Ossama A.
Description: A continuous convex function on an open interval of the real line is differentiable everywhere except on a countable subset of its domain. There has been interest in the problem of characterizing those Banach spaces where the continuous functions exhibit similar differentiability properties. In this paper we show that if a Banach space E has property (H*) and B_E• is weak* sequentially compact, then E is an Asplund space. In the case where the space is weakly compactly generated, it is shown that property (H*) is equivalent for the space to admit an equivalent Frechet differentiable norm. Moreover, we define the SH* spaces, show that every SH* space is an Asplund space, and show that every weakly sequentially complete SH* space is reflexive. Also, we study the relation between property (H*) and the asymptotic norming property (ANP). By a slight modification of the ANP we define the ANP*, and show that if the dual of a Banach spaces has the ANP*-I then the space admits an equivalent Fréchet differentiability norm, and that the ANP*-II is equivalent to the space having property (H*) and the closed unit ball of the dual is weak* sequentially compact. Also, we show that in the ...
Contributing Partner: UNT Libraries
Applications of Rapidly Mixing Markov Chains to Problems in Graph Theory

Applications of Rapidly Mixing Markov Chains to Problems in Graph Theory

Date: August 1993
Creator: Simmons, Dayton C. (Dayton Cooper)
Description: In this dissertation the results of Jerrum and Sinclair on the conductance of Markov chains are used to prove that almost all generalized Steinhaus graphs are rapidly mixing and an algorithm for the uniform generation of 2 - (4k + 1,4,1) cyclic Mendelsohn designs is developed.
Contributing Partner: UNT Libraries
Primitive Substitutive Numbers are Closed under Rational Multiplication

Primitive Substitutive Numbers are Closed under Rational Multiplication

Date: August 1998
Creator: Ketkar, Pallavi S. (Pallavi Subhash)
Description: Lehr (1991) proved that, if M(q, r) denotes the set of real numbers whose expansion in base-r is q-automatic i.e., is recognized by an automaton A = (Aq, Ar, ao, δ, φ) (or is the image under a letter to letter morphism of a fixed point of a substitution of constant length q) then M(q, r) is closed under addition and rational multiplication. Similarly if we let M(r) denote the set of real numbers α whose base-r digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution then in an attempt to generalize Lehr's result we show that the set M(r) is closed under multiplication by rational numbers. We also show that M(r) is not closed under addition.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST