## You limited your search to:

**Partner:**UNT Libraries

**Department:**Department of Mathematics

**Degree Level:**Master's

**Collection:**UNT Theses and Dissertations

### An Exploration of the Word2vec Algorithm: Creating a Vector Representation of a Language Vocabulary that Encodes Meaning and Usage Patterns in the Vector Space Structure

**Date:**May 2016

**Creator:**Le, Thu Anh

**Description:**This thesis is an exloration and exposition of a highly efficient shallow neural network algorithm called word2vec, which was developed by T. Mikolov et al. in order to create vector representations of a language vocabulary such that information about the meaning and usage of the vocabulary words is encoded in the vector space structure. Chapter 1 introduces natural language processing, vector representations of language vocabularies, and the word2vec algorithm. Chapter 2 reviews the basic mathematical theory of deterministic convex optimization. Chapter 3 provides background on some concepts from computer science that are used in the word2vec algorithm: Huffman trees, neural networks, and binary cross-entropy. Chapter 4 provides a detailed discussion of the word2vec algorithm itself and includes a discussion of continuous bag of words, skip-gram, hierarchical softmax, and negative sampling. Finally, Chapter 5 explores some applications of vector representations: word categorization, analogy completion, and language translation assistance.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849728/

### A Comparison of Velocities Computed by Two-Dimensional Potential Theory and Velocities Measured in the Vicinity of an Airfoil

**Date:**June 1947

**Creator:**Copp, George

**Description:**In treating the motion of a fluid mathematically, it is convenient to make some simplifying assumptions. The assumptions which are made will be justifiable if they save long and laborious computations in practical problems, and if the predicted results agree closely enough with experimental results for practical use. In dealing with the flow of air about an airfoil, at subsonic speeds, the fluid will be considered as a homogeneous, incompressible, inviscid fluid.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc699611/

### Some Effects of the War Upon the Mathematics Curriculum and the Motivating Forces at Work as Reflected in the Dallas City Schools

**Date:**August 1945

**Creator:**Smith, R. N.

**Description:**"To discuss the effect all this war activity has had upon the Dallas Schools and to voice a protest against those who seek to discredit mathematics and at the same time to contribute a readable thesis upon the subject is largely the purpose of this study." --leaf 2

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc699532/

### Absolute Continuity and the Integration of Bounded Set Functions

**Date:**May 1975

**Creator:**Allen, John Houston

**Description:**The first chapter gives basic definitions and theorems concerning set functions and set function integrals. The lemmas and theorems are presented without proof in this chapter. The second chapter deals with absolute continuity and Lipschitz condition. Particular emphasis is placed on the properties of max and min integrals. The third chapter deals with approximating absolutely continuous functions with bounded functions. It also deals with the existence of the integrals composed of various combinations of bounded functions and finitely additive functions. The concluding theorem states if the integral of the product of a bounded function and a non-negative finitely additive function exists, then the integral of the product of the bounded function with an absolutely continuous function exists over any element in a field of subsets of a set U.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663440/

### A Partial Characterization of Upper Semi-Continuous Decompositions

**Date:**December 1973

**Creator:**Dennis, William Albert

**Description:**The goal of this paper is to characterize, at least partially, upper semi-continuous decompositions of topological spaces and the role that upper semi-continuity plays in preserving certain topological properties under decomposition mappings. Attention is also given to establishing what role upper semi-continuity plays in determining conditions under which decomposition spaces possess certain properties. A number of results for non-upper semi-continuous decompositions are included to help clarify the scope of the part upper semi-continuity plays in determining relationships between topological spaces and their decomposition spaces.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663520/

### Proofs of Some Limit Theorems in Probability

**Date:**December 1974

**Creator:**Hwang, E-Bin

**Description:**This study gives detailed proofs of some limit theorems in probability which are important in theoretical and applied probability, The general introduction contains definitions and theorems that are basic tools of the later development. Included in this first chapter is material concerning normal distributions and characteristic functions, The second chapter introduces lower and upper bounds of the ratio of the binomial distribution to the normal distribution., Then these bound are used to prove the local Deioivre-Laplace limit theorem. The third chapter includes proofs of the central limit theorems for identically distributed and non-identically distributed random variables,

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663330/

### Valuations and Valuation Rings

**Date:**August 1975

**Creator:**Badt, Sig H.

**Description:**This paper is an investigation of several basic properties of ordered Abelian groups, valuations, the relationship between valuation rings, valuations, and their value groups and valuation rings. The proofs to all theorems stated without proof can be found in Zariski and Samuel, Commutative Algebra, Vol. I, 1858. In Chapter I several basic theorems which are used in later proofs are stated without proof, and we prove several theorems on the structure of ordered Abelian groups, and the basic relationships between these groups, valuations, and their valuation rings in a field. In Chapter II we deal with valuation rings, and relate the structure of valuation rings to the structure of their value groups.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663650/

### Linear Operators

**Date:**December 1975

**Creator:**Malhotra, Vijay Kumar

**Description:**This paper is a study of linear operators defined on normed linear spaces. A basic knowledge of set theory and vector spaces is assumed, and all spaces considered have real vector spaces. The first chapter is a general introduction that contains assumed definitions and theorems. Included in this chapter is material concerning linear functionals, continuity, and boundedness. The second chapter contains the proofs of three fundamental theorems of linear analysis: the Open Mapping Theorem, the Hahn-Banach Theorem, and the Uniform Boundedness Principle. The third chapter is concerned with applying some of the results established in earlier chapters. In particular, the concepts of compact operators and Schauder bases are introduced, and a proof that an operator is compact if and only if its adjoint is compact is included. This chapter concludes with a proof of an important application of the Open Mapping Theorem, namely, the Closed Graph Theorem.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663614/

### Equivalent Sets and Cardinal Numbers

**Date:**December 1975

**Creator:**Hsueh, Shawing

**Description:**The purpose of this thesis is to study the equivalence relation between sets A and B: A o B if and only if there exists a one to one function f from A onto B. In Chapter I, some of the fundamental properties of the equivalence relation are derived. Certain basic results on countable and uncountable sets are given. In Chapter II, a number of theorems on equivalent sets are proved and Dedekind's definitions of finite and infinite are compared with the ordinary concepts of finite and infinite. The Bernstein Theorem is studied and three different proofs of it are given. In Chapter III, the concept of cardinal number is introduced by means of two axioms of A. Tarski, and some fundamental theorems on cardinal arithmetic are proved.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663009/

### The Use of Chebyshev Polynomials in Numerical Analysis

**Date:**December 1975

**Creator:**Forisha, Donnie R.

**Description:**The purpose of this paper is to investigate the nature and practical uses of Chebyshev polynomials. Chapter I gives recognition to mathematicians responsible for studies in this area. Chapter II enumerates several mathematical situations in which the polynomials naturally arise and suggests reasons for the pursuance of their study. Chapter III includes: Chebyshev polynomials as related to "best" polynomial approximation, Chebyshev series, and methods of producing polynomial approximations to continuous functions. Chapter IV discusses the use of Chebyshev polynomials to solve certain differential equations and Chebyshev-Gauss quadrature.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663496/

### Euclidean Rings

**Date:**May 1974

**Creator:**Fecke, Ralph Michael

**Description:**The cardinality of the set of units, and of the set of equivalence classes of primes in non-trivial Euclidean domains is discussed with reference to the categories "finite" and "infinite." It is shown that no Euclidean domains exist for which both of these sets are finite. The other three combinations are possible and examples are given. For the more general Euclidean rings, the first combination is possible and examples are likewise given. Prime factorization is also discussed in both Euclidean rings and Euclidean domains. For Euclidean rings, an alternative definition of prime elements in terms of associates is compared and contrasted to the usual definitions.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663654/

### Some Properties of Metric Spaces

**Date:**August 1964

**Creator:**Brazile, Robert P.

**Description:**The study of metric spaces is closely related to the study of topology in that the study of metric spaces concerns itself, also, with sets of points and with a limit point concept based on a function which gives a "distance" between two points. In some topological spaces it is possible to define a distance function between points in such a way that a limit point of a set in the topological sense is also a limit point of the same set in a metric sense. In such a case the topological space is "metrizable". The real numbers with its usual topology is an example of a topological space which is metrizable, the distance function being the absolute value of the difference of two real numbers. Chapters II and III of this thesis attempt to classify, to a certain extent, what type of topological space is metrizable. Chapters IV and V deal with several properties of metric spaces and certain functions of metric spaces, respectively.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663798/

### Inverse Limit Spaces

**Date:**December 1974

**Creator:**Williams, Stephen Boyd

**Description:**Inverse systems, inverse limit spaces, and bonding maps are defined. An investigation of the properties that an inverse limit space inherits, depending on the conditions placed on the factor spaces and bonding maps is made. Conditions necessary to ensure that the inverse limit space is compact, connected, locally connected, and semi-locally connected are examined. A mapping from one inverse system to another is defined and the nature of the function between the respective inverse limits, induced by this mapping, is investigated. Certain restrictions guarantee that the induced function is continuous, onto, monotone, periodic, or open. It is also shown that any compact metric space is the continuous image of the cantor set. Finally, any compact Hausdorff space is characterized as the inverse limit of an inverse system of polyhedra.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663483/

### Properties of Some Classical Integral Domains

**Date:**May 1975

**Creator:**Crawford, Timothy B.

**Description:**Greatest common divisor domains, Bezout domains, valuation rings, and Prüfer domains are studied. Chapter One gives a brief introduction, statements of definitions, and statements of theorems without proof. In Chapter Two theorems about greatest common divisor domains and characterizations of Bezout domains, valuation rings, and Prüfer domains are proved. Also included are characterizations of a flat overring. Some of the results are that an integral domain is a Prüfer domain if and only if every overring is flat and that every overring of a Prüfer domain is a Prüfer domain.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663731/

### Chebyshev Subsets in Smooth Normed Linear Spaces

**Date:**December 1974

**Creator:**Svrcek, Frank J.

**Description:**This paper is a study of the relation between smoothness of the norm on a normed linear space and the property that every Chebyshev subset is convex. Every normed linear space of finite dimension, having a smooth norm, has the property that every Chebyshev subset is convex. In the second chapter two properties of the norm, uniform Gateaux differentiability and uniform Frechet differentiability where the latter implies the former, are given and are shown to be equivalent to smoothness of the norm in spaces of finite dimension. In the third chapter it is shown that every reflexive normed linear space having a uniformly Gateaux differentiable norm has the property that every weakly closed Chebyshev subset, with non-empty weak interior that is norm-wise dense in the subset, is convex.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663499/

### Topics in Category Theory

**Date:**August 1974

**Creator:**Miller, Robert Patrick

**Description:**The purpose of this paper is to examine some basic topics in category theory. A category consists of a class of mathematical objects along with a morphism class having an associative composition. The paper is divided into two chapters. Chapter I deals with intrinsic properties of categories. Various "sub-objects" and properties of morphisms are defined and examples are given. Chapter II deals with morphisms between categories called functors and the natural transformations between functors. Special types of functors are defined and examples are given.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663720/

### Spaces of Closed Subsets of a Topological Space

**Date:**August 1974

**Creator:**Leslie, Patricia J.

**Description:**The purpose of this paper is to examine selected topologies, the Vietoris topology in particular, on S(X), the collection of nonempty, closed subsets of a topological space X. Characteristics of open and closed subsets of S(X), with the Vietoris topology, are noted. The relationships between the space X and the space S(X), with the Vietoris topology, concerning the properties of countability, compactness, and connectedness and the separation properties are investigated. Additional topologies are defined on S(X), and each is compared to the Vietoris topology on S(X). Finally, topological convergence of nets of subsets of X is considered. It is found that topological convergence induces a topology on S(X), and that this topology is the Vietoris topology on S(X) when X is a compact, Hausdorff space.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663365/

### Wiener's Approximation Theorem for Locally Compact Abelian Groups

**Date:**August 1974

**Creator:**Shu, Ven-shion

**Description:**This study of classical and modern harmonic analysis extends the classical Wiener's approximation theorem to locally compact abelian groups. The first chapter deals with harmonic analysis on the n-dimensional Euclidean space. Included in this chapter are some properties of functions in L1(Rn) and T1(Rn), the Wiener-Levy theorem, and Wiener's approximation theorem. The second chapter introduces the notion of standard function algebra, cospectrum, and Wiener algebra. An abstract form of Wiener's approximation theorem and its generalization is obtained. The third chapter introduces the dual group of a locally compact abelian group, defines the Fourier transform of functions in L1(G), and establishes several properties of functions in L1(G) and T1(G). Wiener's approximation theorem and its generalization for L1(G) is established.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663188/

### Topologies on Complete Lattices

**Date:**December 1973

**Creator:**Dwyer, William Karl

**Description:**One of the more important concepts in mathematics is the concept of order, that is, the description or comparison of two elements of a set in terms of one preceding or being smaller than or equal to the other. If the elements of a set, as pairs, exhibit certain order-type characteristics, the set is said to be a partially ordered set. The purpose of this paper is to investigate a special class of partially ordered sets, called lattices, and to investigate topologies induced on these lattices by specially defined order related properties called order-convergence and star-convergence.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663129/

### Duals and Weak Completeness in Certain Sequence Spaces

**Date:**August 1980

**Creator:**Leavelle, Tommy L. (Tommy Lee)

**Description:**In this paper the weak completeness of certain sequence spaces is examined. In particular, we show that each of the sequence spaces c0 and 9, 1 < p < c, is a Banach space. A Riesz representation for the dual space of each of these sequence spaces is given. A Riesz representation theorem for Hilbert space is also proven. In the third chapter we conclude that any reflexive space is weakly (sequentially) complete. We give 01 as an example of a non-reflexive space that is weakly complete. Two examples, c0 and YJ, are given of spaces that fail to be weakly complete.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504338/

### Interpolation and Approximation

**Date:**May 1977

**Creator:**Lal, Ram

**Description:**In this paper, there are three chapters. The first chapter discusses interpolation. Here a theorem about the uniqueness of the solution to the general interpolation problem is proven. Then the problem of how to represent this unique solution is discussed. Finally, the error involved in the interpolation and the convergence of the interpolation process is developed. In the second chapter a theorem about the uniform approximation to continuous functions is proven. Then the best approximation and the least squares approximation (a special case of best approximation) is discussed. In the third chapter orthogonal polynomials as discussed as well as bounded linear functionals in Hilbert spaces, interpolation and approximation and approximation in Hilbert space.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504571/

### Complete Ordered Fields

**Date:**August 1977

**Creator:**Arnold, Thompson Sharon

**Description:**The purpose of this thesis is to study the concept of completeness in an ordered field. Several conditions which are necessary and sufficient for completeness in an ordered field are examined. In Chapter I the definitions of a field and an ordered field are presented and several properties of fields and ordered fields are noted. Chapter II defines an Archimedean field and presents several conditions equivalent to the Archimedean property. Definitions of a complete ordered field (in terms of a least upper bound) and the set of real numbers are also stated. Chapter III presents eight conditions which are equivalent to completeness in an ordered field. These conditions include the concepts of nested intervals, Dedekind cuts, bounded monotonic sequences, convergent subsequences, open coverings, cluster points, Cauchy sequences, and continuous functions.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504449/

### The Wallman Spaces and Compactifications

**Date:**December 1976

**Creator:**Liu, Wei-kong

**Description:**If X is a topological space and Y is a ring of closed sets, then a necessary and sufficient condition for the Wallman space W(X,F) to be a compactification of X is that X be T1 andYF separating. A necessary and sufficient condition for a Wallman compactification to be Hausdoff is that F be a normal base. As a result, not all T, compactifications can be of Wallman type. One point and finite Hausdorff compactifications are of Wallman type.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504392/

### Valuations on Fields

**Date:**May 1977

**Creator:**Walker, Catherine A.

**Description:**This thesis investigates some properties of valuations on fields. Basic definitions and theorems assumed are stated in Capter I. Chapter II introduces the concept of a valuation on a field. Real valuations and non-Archimedean valuations are presented. Chapter III generalizes non-Archimedean valuations. Examples are described in Chapters I and II. A result is the theorem stating that a real valuation of a field K is non-Archimedean if and only if $(a+b) < max4# (a), (b) for all a and b in K. Chapter III generally defines a non-Archimedean valuation as an ordered abelian group. Real non-Archimedean valuations are either discrete or nondiscrete. Chapter III shows that every valuation ring identifies a non-Archimedean valuation and every non-Archimedean valuation identifies a valuation ring.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc504040/