You limited your search to:

  Partner: UNT Libraries
 Department: Department of Mathematics
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Fundamental Issues in Support Vector Machines

Fundamental Issues in Support Vector Machines

Date: May 2014
Creator: McWhorter, Samuel P.
Description: This dissertation considers certain issues in support vector machines (SVMs), including a description of their construction, aspects of certain exponential kernels used in some SVMs, and a presentation of an algorithm that computes the necessary elements of their operation with proof of convergence. In its first section, this dissertation provides a reasonably complete description of SVMs and their theoretical basis, along with a few motivating examples and counterexamples. This section may be used as an accessible, stand-alone introduction to the subject of SVMs for the advanced undergraduate. Its second section provides a proof of the positive-definiteness of a certain useful function here called E and dened as follows: Let V be a complex inner product space. Let N be a function that maps a vector from V to its norm. Let p be a real number between 0 and 2 inclusive and for any in V , let ( be N() raised to the p-th power. Finally, let a be a positive real number. Then E() is exp(()). Although the result is not new (other proofs are known but involve deep properties of stochastic processes) this proof is accessible to advanced undergraduates with a decent grasp of linear algebra. Its ...
Contributing Partner: UNT Libraries
Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models

Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models

Date: December 2013
Creator: Weng, Yu
Description: We consider the problem of maximum likelihood estimation of logistic sinusoidal regression models and develop some asymptotic theory including the consistency and joint rates of convergence for the maximum likelihood estimators. The key techniques build upon a synthesis of the results of Walker and Song and Li for the widely studied sinusoidal regression model and on making a connection to a result of Radchenko. Monte Carlo simulations are also presented to demonstrate the finite-sample performance of the estimators
Contributing Partner: UNT Libraries
Polynomial Isomorphisms of Cayley Objects Over a Finite Field

Polynomial Isomorphisms of Cayley Objects Over a Finite Field

Date: December 1989
Creator: Park, Hong Goo
Description: In this dissertation the Bays-Lambossy theorem is generalized to GF(pn). The Bays-Lambossy theorem states that if two Cayley objects each based on GF(p) are isomorphic then they are isomorphic by a multiplier map. We use this characterization to show that under certain conditions two isomorphic Cayley objects over GF(pn) must be isomorphic by a function on GF(pn) of a particular type.
Contributing Partner: UNT Libraries
Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank

Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank

Date: August 2013
Creator: Dahal, Rabin
Description: Let G be a Lie group acting on a homogeneous space G/K. The center of the universal enveloping algebra of the Lie algebra of G maps homomorphically into the center of the algebra of differential operators on G/K invariant under the action of G. In the case that G is a Jacobi Lie group of rank 2, we prove that this homomorphism is surjective and hence that the center of the invariant differential operator algebra is the image of the center of the universal enveloping algebra. This is an extension of work of Bringmann, Conley, and Richter in the rank 1case.
Contributing Partner: UNT Libraries
Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Date: December 1998
Creator: Richardson, Peter A. (Peter Adolph), 1955-
Description: In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.
Contributing Partner: UNT Libraries
Minimality of the Special Linear Groups

Minimality of the Special Linear Groups

Date: December 1997
Creator: Hayes, Diana Margaret
Description: Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear group SLn(F) with the usual topology induced by F is a minimal topological group. This is accomplished by first proving the minimality of the upper triangular group in SLn(F). The proof for the upper triangular group uses an induction argument on a chain of upper triangular subgroups and relies on general results for locally compact topological groups, quotient groups, and subgroups. Minimality of SLn(F) is concluded by appealing to the associated Lie group decomposition as the product of a compact group and an upper triangular group. We also prove the universal minimality of homeomorphism groups of one dimensional manifolds, and we give a new simple proof of the universal minimality of S∞.
Contributing Partner: UNT Libraries
Topics in Fractal Geometry

Topics in Fractal Geometry

Date: August 1994
Creator: Wang, JingLing
Description: In this dissertation, we study fractal sets and their properties, especially the open set condition, Hausdorff dimensions and Hausdorff measures for certain fractal constructions.
Contributing Partner: UNT Libraries
Multifractal Measures

Multifractal Measures

Date: May 1994
Creator: Olsen, Lars
Description: The purpose of this dissertation is to introduce a natural and unifying multifractal formalism which contains the above mentioned multifractal parameters, and gives interesting results for a large class of natural measures. In Part 2 we introduce the proposed multifractal formalism and study it properties. We also show that this multifractal formalism gives natural and interesting results when applied to (nonrandom) graph directed self-similar measures in Rd and "cookie-cutter" measures in R. In Part 3 we use the multifractal formalism introduced in Part 2 to give a detailed discussion of the multifractal structure of random (and hence, as a special case, non-random) graph directed self-similar measures in R^d.
Contributing Partner: UNT Libraries
Aspects of Universality in Function Iteration

Aspects of Universality in Function Iteration

Date: December 1991
Creator: Taylor, John (John Allen)
Description: This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.
Contributing Partner: UNT Libraries
π-regular Rings

π-regular Rings

Date: May 1993
Creator: Badawi, Ayman R.
Description: The dissertation focuses on the structure of π-regular (regular) rings.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST