You limited your search to:

  Partner: UNT Libraries
 Department: Department of Engineering Technology
 Collection: UNT Theses and Dissertations
Design of a Monitoring System for a Plasma Cleaning Machine

Design of a Monitoring System for a Plasma Cleaning Machine

Date: May 1999
Creator: Fooks, Terry M. (Terry Max)
Description: Plasma cleaning is the most effective dry process to remove surface contaminates from a SAW (Surface Acoustical Wave) device. Consistent gas pressures, flows, and good electrical connections between the chamber shelves are necessary for the process to function predictably. In addition, operation of the monitoring system must be transparent to the plasma cleaning unit. This thesis describes a simple solution to the complex problem of monitoring a plasma cleaning system. The monitoring system uses the LabVIEW® G programming language and hardware, both products of National Instruments, Inc.®, to monitor critical parameters necessary to achieve a consistent process when cleaning these devices.
Contributing Partner: UNT Libraries
A Data Acquisition System Experiment for Gas Temperature and Pressure Measurements on a Liquid-Nitrogen-Powered Vehicle

A Data Acquisition System Experiment for Gas Temperature and Pressure Measurements on a Liquid-Nitrogen-Powered Vehicle

Date: May 1998
Creator: Lui, Samson Sze-Sang
Description: A data acquisition system was set up to measure gas temperatures and pressures at various points on a liquid-nitrogen-powered vehicle. The experiment was attempted to develop a data acquisition method for applications on engines that use liquid air as the fuel. Two thermocouples and a pressure transducer were connected using data acquisition instruments interfaced to a laptop computer to acquire data.
Contributing Partner: UNT Libraries
Fracture Toughness Testing of Plastics under Various Environmental Conditions

Fracture Toughness Testing of Plastics under Various Environmental Conditions

Date: December 1997
Creator: Velpuri, Seshagirirao V.
Description: The primary objective of this study is to test the applicability to plastics of a fracture toughness testing tool developed for metals. The intent is to study pre-test conditioning of several plastic materials and the effect of the depth of the razor notch cut in the chevron notched fracture toughness test specimens. The study includes the careful preparation of samples followed by conditioning in various environments. Samples were subjected to laboratory air for a specific duration or to a controlled temperature-humidity condition as per the ASTM D1870. Some of the samples were subjected to vacuum conditioning under standard test specifications. Testing was conducted using the conventional three-point bend test as per ASTM D5045-95. ASTM E1304, which sets a standard for short rod and bar testing of metals and ceramics provides some basis for conducting chevron notched four-point bend tests to duplicate the toughness tool. Correlation of these results with the ASTM test samples is determined. The four-point bend test involves less specimen machining as well as time to perform the fracture toughness tests. This study of fracture toughness testing has potential for quality control as well as the fracture property determination.
Contributing Partner: UNT Libraries
Development of a Simplified Fracture Toughness Tool for Polymers

Development of a Simplified Fracture Toughness Tool for Polymers

Date: August 1997
Creator: Marnock, Patrick J. (Patrick Joseph)
Description: This thesis presents research toward the development of a simple inexpensive fracture toughness tool for polymeric materials. Experiments were conducted to test the specimen configuration and the fracture toughness tool against an established ASTM standard for polymer fracture toughness, D5045, and a commonly used four-point bend method. The materials used in this study were polycarbonate and high density polyethylene. Reductions in both the production time and the variability resulting from the preparation of the specimens were addressed through the use of specially designed fixtures. The effects from the razor cut depths used in the chevron notch were compared to the fracture toughness values obtained in order to determine the effect upon the validity of the fracture toughness.
Contributing Partner: UNT Libraries
A Computer-Based Process Control System for a Target Station in a LINAC Facility

A Computer-Based Process Control System for a Target Station in a LINAC Facility

Date: May 1999
Creator: Al-Shantaf, Abdulraouf O.
Description: An event-driven, sequential, process control system was designed for International Isotopes, Inc., to automate and remotely control a target station at the company's linear accelerator facility. The designed system consisted of two major sections: a software program (virtual instrument), which was developed by LabVIEW, and a hardware interface (FieldPoint Modular Distributed I/O System by National Instrument), which had to be a pre-developed system that did not require customization. The designed virtual instrument was tested on a simulation model that mimed the target station. The result was a valid design.
Contributing Partner: UNT Libraries
Effects of Processing Techniques on Mechanical Properties of Selected Polymers

Effects of Processing Techniques on Mechanical Properties of Selected Polymers

Date: May 2013
Creator: Dong, Yao
Description: The mechanical properties of a polymer represent the critical characteristics to be considered when determining the applications for it. The same polymer processed with different methods can exhibit different mechanical properties. The purpose of this study is to investigate the difference in mechanical properties of the selected polymers caused by different processing techniques and conditions. Three polymers were studied, including low density polyethylene (LDPE), polypropylene (PP), and NEXPRENE® 1287A. Samples were processed with injection molding and compression molding under different processing condition. Tensile and DMA tests were performed on these samples. The acquired data of strain at break from the tensile tests and storage modulus from the DMA were utilized to calculate brittleness. Calculated brittleness values were used to perform analysis of variance (ANOVA) to investigate the statistical significance of the processing technique and condition. It was found that different processing techniques affect the brittleness significantly. The processing technique is the major factor affecting brittleness of PP and NEXPRENE, and the processing temperature is the major factor affecting brittleness of LDPE.
Contributing Partner: UNT Libraries
Corrosion Protection of Low Carbon Steel By Cation Substituted Magnetite (Fe3o4)

Corrosion Protection of Low Carbon Steel By Cation Substituted Magnetite (Fe3o4)

Date: May 2013
Creator: Phadnis, Ameya
Description: Surfaces of low carbon steel sheet were modified by exposure to highly caustic aqueous solutions containing either chromium or aluminum cations. Corrosion resistances of such surfaces were compared with that of steel surfaces exposed to plain caustic aqueous solution. In all cases a highly uniform, black coating having a spinel structure similar to magnetite (Fe3O4) was obtained. The coated steel surfaces were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectrophotometry (FTIR). Polarization resistances (Rp) of modified steel surfaces were measured and compared with that of bare steel surfaces. Results indicate that chromium (Fe2+ Fe3+x Cr3+1-x) or aluminum (Fe2+ Fe3+x Al3+1-x) substituted spinel phases formed on steel surfaces showed higher Rp values compared to only magnetite (Fe2+ 2Fe3+O4) phase formed in the absence of either chromium or aluminum cations. Average Rp values for steel surfaces with chromium containing spinel phase were much higher (21.8 k?) as compared to 1.7 k? for bare steel surfaces. Steel surfaces with aluminum containing spinel phase and steels with plain magnetite coated samples showed average Rp values of 3.3 k? and 2.5 k? respectively. XPS and EDS analysis confirmed presence of cations of chromium and ...
Contributing Partner: UNT Libraries
Direct Strength Method for Web Crippling of Cold-formed Steel C-sections

Direct Strength Method for Web Crippling of Cold-formed Steel C-sections

Date: May 2013
Creator: Seelam, Praveen Kumar Reddy
Description: Web crippling is a form of localized buckling that occurs at points of transverse concentrated loading or supports of thin-walled structural members. The theoretical computation of web crippling strength is quite complex as it involves a large number of factors such as initial imperfections, local yielding at load application and instability of web. The existing design provision in North American specification for cold-formed steel C-sections (AISI S100, 2007) to calculate the web-crippling strength is based on the experimental investigation. The objective of this research is to extend the direct strength method to the web crippling strength of cold-formed steel C-sections. ABAQUS is used as a main tool to apply finite element analysis and is used to do the elastic buckling analysis. The work was carried out on C-sections under interior two flange (ITF) loading, end two flange (ETF) loading cases. Total of 128 (58 ITF, 70 ETF) sections were analyzed. Sections with various heights (3.5 in.to 6 in.) and various lengths (21 in. to 36 in.) were considered. Data is collected from the tests conducted in laboratory and the data from the previous researches is used, to extend the direct strength method to cold formed steel sections. Proposing a new ...
Contributing Partner: UNT Libraries
Analytical Model of Cold-formed Steel Framed Shear Wall with Steel Sheet and Wood-based Sheathing

Analytical Model of Cold-formed Steel Framed Shear Wall with Steel Sheet and Wood-based Sheathing

Date: May 2013
Creator: Yanagi, Noritsugu
Description: The cold-formed steel framed shear walls with steel sheets and wood-based sheathing are both code approved lateral force resisting system in light-framed construction. In the United States, the current design approach for cold-formed steel shear walls is capacity-based and developed from full-scale tests. The available design provisions provide nominal shear strength for only limited wall configurations. This research focused on the development of analytical models of cold-formed steel framed shear walls with steel sheet and wood-based sheathing to predict the nominal shear strength of the walls at their ultimate capacity level. Effective strip model was developed to predict the nominal shear strength of cold-formed steel framed steel sheet shear walls. The proposed design approach is based on a tension field action of the sheathing, shear capacity of sheathing-to-framing fastener connections, fastener spacing, wall aspect ratio, and material properties. A total of 142 full scale test data was used to verify the proposed design method and the supporting design equations. The proposed design approach shows consistent agreement with the test results and the AISI published nominal strength values. Simplified nominal strength model was developed to predict the nominal shear strength of cold-formed steel framed wood-based panel shear walls. The nominal shear ...
Contributing Partner: UNT Libraries
Cold-formed Steel Framed Shear Wall Sheathed with Corrugated Sheet Steel

Cold-formed Steel Framed Shear Wall Sheathed with Corrugated Sheet Steel

Date: May 2013
Creator: Yu, Guowang
Description: Incombustibility is one important advantage of the sheet steel sheathed shear wall over wood panel sheathed shear wall. Compared to shear wall sheathed with plywood and OSB panel, shear wall sheathed with flat sheet steel behaved lower shear strength. Although shear wall sheathed with corrugated sheet steel exhibited high nominal strength and high stiffness, the shear wall usually behaved lower ductility resulting from brittle failure at the connection between the sheathing to frames. This research is aimed at developing modifications on the corrugated sheathing to improve the ductility of the shear wall as well as derive practical response modification factor by establishing correct relationship between ductility factor ? and response modification factor R. Totally 21 monotonic and cyclic full-scale shear wall tests were conducted during the winter break in 2012 by the author in NUCONSTEEL Materials Testing Laboratory in the University of North Texas. The research investigated nineteen 8 ft. × 4 ft. shear walls with 68 mil frames and 27 mil corrugation sheet steel in 11 configurations and two more shear walls sheathed with 6/17-in.OSB and 15/32-in. plywood respectively for comparison. The shear walls, which were in some special cutting arrangement patterns, performed better under lateral load conditions according ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST