You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Resource Type: Thesis or Dissertation
Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

Date: December 2015
Creator: Dahal, Ashok
Description: There are several types of disorders that affect our colon’s ability to function properly such as colorectal cancer, ulcerative colitis, diverticulitis, irritable bowel syndrome and colonic polyps. Automatic detection of these diseases would inform the endoscopist of possible sub-optimal inspection during the colonoscopy procedure as well as save time during post-procedure evaluation. But existing systems only detects few of those disorders like colonic polyps. In this dissertation, we address the automatic detection of another important disorder called ulcerative colitis. We propose a novel texture feature extraction technique to detect the severity of ulcerative colitis in block, image, and video levels. We also enhance the current informative frame filtering methods by detecting water and bubble frames using our proposed technique. Our feature extraction algorithm based on accumulation of pixel value difference provides better accuracy at faster speed than the existing methods making it highly suitable for real-time systems. We also propose a hybrid approach in which our feature method is combined with existing feature method(s) to provide even better accuracy. We extend the block and image level detection method to video level severity score calculation and shot segmentation. Also, the proposed novel feature extraction method can detect water and bubble frames ...
Contributing Partner: UNT Libraries
Integrity Verification of Applications on Radium Architecture

Integrity Verification of Applications on Radium Architecture

Date: August 2015
Creator: Tarigopula, Mohan Krishna
Description: Trusted Computing capability has become ubiquitous these days, and it is being widely deployed into consumer devices as well as enterprise platforms. As the number of threats is increasing at an exponential rate, it is becoming a daunting task to secure the systems against them. In this context, the software integrity measurement at runtime with the support of trusted platforms can be a better security strategy. Trusted Computing devices like TPM secure the evidence of a breach or an attack. These devices remain tamper proof if the hardware platform is physically secured. This type of trusted security is crucial for forensic analysis in the aftermath of a breach. The advantages of trusted platforms can be further leveraged if they can be used wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such architecture, which is built on the strength of TPM. RADIUM provides an asynchronous root of trust to overcome the TOC condition of DRTM. Even though the underlying architecture is trusted, attacks can still compromise applications during runtime by exploiting their vulnerabilities. I propose an application-level integrity measurement solution that fits into RADIUM, to expand the trusted computing capability to the application layer. This is based on the concept ...
Contributing Partner: UNT Libraries
Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Date: August 2015
Creator: Bristow, Kelly H.
Description: Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature ...
Contributing Partner: UNT Libraries
Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

Date: August 2015
Creator: Zhang, Ziming
Description: In order to run and manage resource-intensive high-performance applications, large-scale computing and storage platforms have been evolving rapidly in various domains in both academia and industry. The energy expenditure consumed to operate and maintain these cloud computing infrastructures is a major factor to influence the overall profit and efficiency for most cloud service providers. Moreover, considering the mitigation of environmental damage from excessive carbon dioxide emission, the amount of power consumed by enterprise-scale data centers should be constrained for protection of the environment.Generally speaking, there exists a trade-off between power consumption and application performance in large-scale computing systems and how to balance these two factors has become an important topic for researchers and engineers in cloud and HPC communities. Therefore, minimizing the power usage while satisfying the Service Level Agreements have become one of the most desirable objectives in cloud computing research and implementation. Since the fundamental feature of the cloud computing platform is hosting workloads with a variety of characteristics in a consolidated and on-demand manner, it is demanding to explore the inherent relationship between power usage and machine configurations. Subsequently, with an understanding of these inherent relationships, researchers are able to develop effective power management policies to optimize ...
Contributing Partner: UNT Libraries
Automatic Removal of Complex Shadows From Indoor Videos

Automatic Removal of Complex Shadows From Indoor Videos

Date: August 2015
Creator: Mohapatra, Deepankar
Description: Shadows in indoor scenarios are usually characterized with multiple light sources that produce complex shadow patterns of a single object. Without removing shadow, the foreground object tends to be erroneously segmented. The inconsistent hue and intensity of shadows make automatic removal a challenging task. In this thesis, a dynamic thresholding and transfer learning-based method for removing shadows is proposed. The method suppresses light shadows with a dynamically computed threshold and removes dark shadows using an online learning strategy that is built upon a base classifier trained with manually annotated examples and refined with the automatically identified examples in the new videos. Experimental results demonstrate that despite variation of lighting conditions in videos our proposed method is able to adapt to the videos and remove shadows effectively. The sensitivity of shadow detection changes slightly with different confidence levels used in example selection for classifier retraining and high confidence level usually yields better performance with less retraining iterations.
Contributing Partner: UNT Libraries
Predictive Modeling for Persuasive Ambient Technology

Predictive Modeling for Persuasive Ambient Technology

Date: August 2015
Creator: Powell, Jason W
Description: Computer scientists are increasingly aware of the power of ubiquitous computing systems that can display information in and about the user's environment. One sub category of ubiquitous computing is persuasive ambient information systems that involve an informative display transitioning between the periphery and center of attention. The goal of this ambient technology is to produce a behavior change, implying that a display must be informative, unobtrusive, and persuasive. While a significant body of research exists on ambient technology, previous research has not fully explored the different measures to identify behavior change, evaluation techniques for linking design characteristics to visual effectiveness, nor the use of short-term goals to affect long-term behavior change. This study uses the unique context of noise-induced hearing loss (NIHL) among collegiate musicians to explore these issues through developing the MIHL Reduction Feedback System that collects real-time data, translates it into visuals for music classrooms, provides predictive outcomes for goalsetting persuasion, and provides statistical measures of behavior change.
Contributing Partner: UNT Libraries
Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Date: August 2015
Creator: Liang, Yiheng
Description: Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of ...
Contributing Partner: UNT Libraries
Radium: Secure Policy Engine in Hypervisor

Radium: Secure Policy Engine in Hypervisor

Date: August 2015
Creator: Shah, Tawfiq M
Description: The basis of today’s security systems is the trust and confidence that the system will behave as expected and are in a known good trusted state. The trust is built from hardware and software elements that generates a chain of trust that originates from a trusted known entity. Leveraging hardware, software and a mandatory access control policy technology is needed to create a trusted measurement environment. Employing a control layer (hypervisor or microkernel) with the ability to enforce a fine grained access control policy with hyper call granularity across multiple guest virtual domains can ensure that any malicious environment to be contained. In my research, I propose the use of radium's Asynchronous Root of Trust Measurement (ARTM) capability incorporated with a secure mandatory access control policy engine that would mitigate the limitations of the current hardware TPM solutions. By employing ARTM we can leverage asynchronous use of boot, launch, and use with the hypervisor proving its state and the integrity of the secure policy. My solution is using Radium (Race free on demand integrity architecture) architecture that will allow a more detailed measurement of applications at run time with greater semantic knowledge of the measured environments. Radium incorporation of a ...
Contributing Partner: UNT Libraries
Advanced Power Amplifiers Design for Modern Wireless Communication

Advanced Power Amplifiers Design for Modern Wireless Communication

Date: August 2015
Creator: Shao, Jin
Description: Modern wireless communication systems use spectrally efficient modulation schemes to reach high data rate transmission. These schemes are generally involved with signals with high peak-to-average power ratio (PAPR). Moreover, the development of next generation wireless communication systems requires the power amplifiers to operate over a wide frequency band or multiple frequency bands to support different applications. These wide-band and multi-band solutions will lead to reductions in both the size and cost of the whole system. This dissertation presents several advanced power amplifier solutions to provide wide-band and multi-band operations with efficiency improvement at power back-offs.
Contributing Partner: UNT Libraries
Maintaining Web Applications Integrity Running on Radium

Maintaining Web Applications Integrity Running on Radium

Date: August 2015
Creator: Ur-Rehman, Wasi
Description: Computer security attacks take place due to the presence of vulnerabilities and bugs in software applications. Bugs and vulnerabilities are the result of weak software architecture and lack of standard software development practices. Despite the fact that software companies are investing millions of dollars in the research and development of software designs security risks are still at large. In some cases software applications are found to carry vulnerabilities for many years before being identified. A recent such example is the popular Heart Bleed Bug in the Open SSL/TSL. In today’s world, where new software application are continuously being developed for a varied community of users; it’s highly unlikely to have software applications running without flaws. Attackers on computer system securities exploit these vulnerabilities and bugs and cause threat to privacy without leaving any trace. The most critical vulnerabilities are those which are related to the integrity of the software applications. Because integrity is directly linked to the credibility of software application and data it contains. Here I am giving solution of maintaining web applications integrity running on RADIUM by using daikon. Daikon generates invariants, these invariants are used to maintain the integrity of the web application and also check the ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST