Network maintenance is scheduled for October 8th and 9th from 10:00 PM to 2:00 AM CDT. Brief service interruptions are expected.

  You limited your search to:

  Partner: UNT Libraries
 Department: Department of Biological Sciences
In Vitro Investigations of Antibiotic Influences on Nerve Cell Network Responses to Pharmacological Agents
Neuronal networks, derived from mouse embryonic frontal cortex (FC) tissue grown on microelectrode arrays, were used to investigate effects of gentamicin pretreatment on pharmacological response to the L-type calcium channel blocker, verapamil. Gentamicin is a broad spectrum antibiotic used to control bacterial contamination in cell culture. The addition of gentamicin directly to medium affects the pharmacological and morphological properties of the cells in culture. A reproducible dose response curve to verapamil from untreated cultures was established and the mean EC50 was calculated to be 1.5 ± 0.5 μM (n=10). 40 μM bicuculline was added to some cell cultures to stabilize activity and verapamil dose response curves were performed in presence of bicuculline, EC50 1.4 ± 0.1 μM (n=9). Statistical analysis showed no significant difference in verapamil EC50s values obtained in presence of bicuculline and hence the data was combined and a standard verapamil EC50 was calculated as 1.4 ± 0.13 μM (n=19). This EC50 was then used to compare verapamil EC50s obtained from neuronal cell cultures with chronic and acute exposures to gentamicin. FC cultures (21- 38 days old) were found to be stable in presence of 2300 μM gentamicin. The recommended concentration of gentamicin for contamination control is 5uL /1 ml medium (108 μM). At this concentration, the verapamil EC50 shifted from 1.4 ± 0.13 μM to 0.9 ± 0.2 μM. Given the limited data points and only two complete CRCs, statistical comparison was not feasible. However, there is a definite trend that shows sensitization of cells to verapamil in presence of gentamicin. The cultures exposed to 108 μM gentamicin for 5 days after seeding showed loss of adhesion and no data could be collected for pharmacological analysis. To conclude, acute gentamicin exposure of neuronal cell cultures causes increased sensitivity to verapamil and chronic or long term exposure to gentamicin may cause loss of adhesion of the cell culture by affecting the glial growth. The effect of chronic exposure to gentamicin on pharmacological responses to verapamil remains inconclusive.
The Role of the Actin Cytoskeleton in Asymmetric Cell Division in Maize
Stomata are specialized plant structures required for gaseous exchange with the outer environment. During stomata formation, the cytoskeleton plays an important role in controlling the division of the individual cells leading to the generation of the stomata complex. Two mutants that affect microfilament and microtubule organization in subsidiary mother cells include brk1 and dcd1. While only 20% of the subsidiary cells in the brk1 and dcd1 single mutants are abnormally shaped, it was reported that there is a synergistic effect between the brk1 and dcd1 mutations in the brk1; dcd1 double mutant since 100% of the subsidiary cells are abnormal. The focus of this research is to try to understand this synergistic effect by investigating the actin cytoskeleton and nuclear position in the single and double mutants. The reported results include the observation that the size of actin patch was largest in the wild-type subsidiary mother cells (SMCs) and smallest in dcd1 and brk1; dcd1 SMCs and that brk1 and brk1; dcd1 double mutants had fewer actin patches than wild-type and dcd1 SMCs. Additionally, we observed that some SMCs that did not have actin patches still underwent nuclear migration suggesting that nuclear migration may not be solely dependent on actin patch formation. Finally, during SMC cytokinesis, a large percentage of double mutant (brk1; dcd1) cells showed an off-track development of the phragmoplast as compared to the single mutants and the wild-type plant explaining the large number of abnormally shaped subsidiary cells in the double mutants.
Evidence for Multiple Functions of a Medicago Truncatula Transporter
Access: Use of this item is restricted to the UNT Community.
Legumes play an important role in agriculture as major food sources for humans and as feed for animals. Bioavailable nitrogen is a limiting nutrient for crop growth. Legumes are important because they can form a symbiotic relationship with soil bacteria called rhizobia that results in nitrogen-fixing root nodules. In this symbiosis, rhizobia provide nitrogen to the legumes and the legumes provide carbon sources to the rhizobia. The Medicago truncatula NPF1.7/NIP/LATD gene is essential for root nodule development and also for proper development of root architecture. Work in our lab on the MtNPF1.7/MtNIP/LATD gene has established that it encodes a nitrate transporter and strongly suggests it has another function. Mtnip-1/latd mutants have pleiotropic defects, which are only partially explained by defects in nitrate transport. MtNPF1.7/NIP/LATD is a member of the large and diverse NPF/NRT1(PTR) transporter family. NPF/NRT1(PTR) members have been shown to transport other compounds in addition to nitrate: nitrite, amino acids, di- and tri-peptides, dicarboxylates, auxin, abscisic acid and glucosinolates. In Arabidopsis thaliana, the AtNPF6.3/NRT1.1( CHL1) transporter was shown to transport auxin as well as nitrate. Atchl1 mutants have defects in root architecture, which may be explained by defects in auxin transport and/or nitrate sensing. Considering the pleiotropic phenotypes observed in Mtnip-1/latd mutant plants, it is possible that MtNPF1.7/NIP/LATD could have similar activity as AtNPF6.3/NRT1.1(CHL1). Experimental evidence shows that the MtNPF1.7/NIP/LATD gene is able to restore nitrate-absent responsiveness defects of the Atchl1-5 mutant. The constitutive expression of MtNPF1.7/NIP/LATD gene was able to partially, but not fully restore the wild-type phenotype in the Atchl1-5 mutant line in response to auxin and cytokinin. The constitutive expression of MtNPF1.7/NIP/LATD gene affects the lateral root density of wild-type Col-0 plants differently in response to IAA in the presence of high (1mM) or low (0.1 mM) nitrate. MtNPF1.7/NIP/LATD gene expression is not regulated by nitrate at the concentrations tested and MtNPF1.7/NIP/LATD does not regulate the nitrate-responsive MtNRT2.1 gene. Mtnip-1 plants have an abnormal gravitropic root response implicating an auxin defect. Together with these results, MtNPF1.7/NIP/LATD is associated with nitrate and auxin; however, it does not act in a homologous fashion as AtNPF6.3/NRT1.1(CHL1) does in A. thaliana.
Engineered Microbial Consortium for the Efficient Conversion of Biomass to Biofuels
Current energy and environmental challenges are driving the use of cellulosic materials for biofuel production. A major obstacle in this pursuit is poor ethanol tolerance among cellulolytic Clostridium species. The first objective of this work was to establish a potential upper boundary of ethanol tolerance for the cellulosome itself. The hydrolytic function of crude cellulosome extracts from C. cellulolyticum on carboxymethyl cellulose (CMC) with 0, 5, 10, 15, 20 and 25% (v/v) ethanol was determined. Results indicated that the endoglucanase activity of the cellulosome incubated in 5% and 10% ethanol was significantly different from a control without ethanol addition. Furthermore a significant difference was observed in endoglucanase activity for cellulosome incubated in 5%, 10%, 15%, 20% and 25% ethanol in a standalone experiment. Endoglucanase activity continued to be observed for up to 25% ethanol, indicating that cellulosome function in ethanol will not be an impediment to future efforts towards engineering increasing production titers to levels at least as high as the current physiological limits of the most tolerant ethanologenic microbes. The second objective of this work was to study bioethanol production by a microbial co-culture involving Clostridium cellulolyticum and a recombinant Zymomonas mobilis engineered for the utilization of oligodextrans. The recombinant Z. mobilis ZM4 pAA1 and wild type ZM4 were first tested on RM medium (ATCC 1341) containing 2% cellobiose as the carbon source. Ethanol production from the recombinant Z. mobilis was three times that observed from the wild type Z. mobilis. Concomitant with ethanol production was the reduction in OD from 2.00 to 1.580, indicating the consumption of cellobiose. No such change in OD was observed from the wild type. The recombinant ZM4 was then co-cultured with C. cellulolyticum using cellobiose and microcrystalline cellulose respectively as carbon sources. Results indicate that the recombinant ZM4 acted synergistically with C. cellulolyticum to utilize 2.0 g L-1 cellobiose, producing as much as 0.40 mM concentration of ethanol whereas only 0.20 mM ethanol was detected for the wild type ZM4 co-cultured with C. cellulolyticum under the same conditions. A co-culture of the recombinant ZM4 and C. cellulolyticum using 7.5 g L-1 microcrystalline cellulose gave lower ethanol yield than when using cellobiose. In the latter case, the recombinant began producing ethanol in 5 days whereas the wild type required 10 days to produce detectable ethanol. Future efforts will concentrate on identifying the correct concentration of cellulosic substrate at which synergy will be observed using the recombinant ZM4 and other cellulose degrading microorganisms, as well as optimizing medium formulations to better support both organisms.
Optimization of Novel Culturing and Testing Procedures for Acute Effects on Acartia Tonsa and Tisbe Biminiensis
Copepods comprise an ecologically important role in freshwater and marine ecosystems, which is why they are often considered an important ecotoxicological model organism. The International Organization for Standardization’s (ISO) 14669 protocol is the only guideline for the determination of acute toxicity in three European marine copepod species: Acartia tonsa. The goal of this project was to assess the feasibility of establishing and maintaining cultures of Acartia tonsa, as well as to refine current culturing and egg separation methods. Initial culture methodology proved difficult for consistent production of eggs and collection of nauplii. The development of an airlift system for the separation of eggs from nauplii and adults, based on size, successfully increased the availability of eggs, nauplii and adults. The sensitivity and relative conditions of the copepod species was assessed by running a series of 48h acute toxicity tests with the reference toxicants 3,5-dichlorophenol, 4,4’-methylenebis(2,6-di-tert-butylphenol. The acute 48 hour median lethal dose concentration (LC50), the no observed effect concentration (NOEC), and the lowest observed effect concentration (LOEC) was analyzed for the three reference compounds for of A. tonsa.
Regulation of Alternative Sigma Factors During Oxidative and Ph Stresses in the Phototroph Rhodopseudomonas Palustris
Rhodopseudomonas palustris is a metabolically versatile phototrophic α-proteobacterium. The organism experiences a wide range of stresses in its environment and during metabolism. The oxidative an pH stresses of four ECF (extracytoplasmic function) σ-factors are investigated. Three of these, σ0550, σ1813, and σ1819 show responses to light-generated singlet oxygen and respiration-generated superoxide reactive oxygen species (ROS). The EcfG homolog, σ4225, shows a high response to superoxide and acid stress. Two proteins, one containing the EcfG regulatory sequence, and an alternative exported catalase, KatE, are presented to be regulated by σ4225. Transcripts of both genes show similar responses to oxidative stress compared to σ4225, indicating it is the EcfG-like σ-factor homolog and controls the global stress response in R. palustris.
Measuring Biomarkers From Dried Blood Spots Utilizing Bead-based Multiplex Technology
Dried blood spots is an alternative method to collect blood samples from research subjects. However, little is known about how hemoglobin and hematocrit affect bead-based multiplex assay performance. The purpose of this study was to determine how bead-based multiplex assays perform when analyzing dried blood spot samples. A series of four experiments outline the study each with a specific purpose. A total of 167 subject samples were collected and 92 different biomarkers were measured. Median fluorescence intensity results show a positive correlation between filtered and non-filtered samples. Utilizing a smaller quantity of sample results in a positive correlation to a larger sample. Removal of hemoglobin from the dried blood spot sample does not increase detection or concentration of biomarkers. Of the 92 different biomarkers measured 56 were detectable in 100-75% of the attempted samples. We conclude that blood biomarkers can be detected using bead-based multiplex assays. In addition, it is possible to utilize a smaller quantity of sample while avoiding the use of the entire sample, and maintaining a correlation to the total sample. While our method of hemoglobin was efficient it also removed the biomarkers we wished to analyze. Thus, an alternative method is necessary to determine if removing hemoglobin increases concentration of biomarkers. More research is necessary to determine if the biomarkers measured in this study can be measured over time or within an experimental model.
The Effects of Inbreeding on Fitness Traits in the Critically Endangered Attwater’s Prairie-chicken
The goals of captive breeding programs for endangered species include preserving genetic diversity and avoiding inbreeding. Typically this is accomplished by minimizing population mean kinship; however, this approach becomes less effective when errors in the pedigree exist and may result in inbreeding depression, or reduced survival. Here, both pedigree- and DNA-based methods were used to assess inbreeding depression in the critically endangered Attwater’s prairie-chicken (Tympanuchus cupido attwateri). Less variation in the pedigree-based inbreeding coefficients and parental relatedness values were observed compared to DNA-based measures suggesting that errors exist in the pedigree. Further, chicks identified with high parental DNA-based relatedness exhibited decreased survival at both 14- and 50-days post-hatch. A similar pattern was observed in later life stages (> 50 days post-hatch) with birds released to the wild; however, the pattern varied depending on the time post-release. While DNA-based inbreeding coefficient was positively correlated with mortality to one month post-release, an opposite pattern was observed at nine months suggesting purging of deleterious alleles. I also investigated whether immunocompetence, or the ability to produce a normal immune response, was correlated with survival; however, no significant correlation was observed suggesting that inbreeding was a more important factor influencing survival. Pairing individuals for breeding by minimizing DNA-based parental relatedness values resulted in a significant increase in chick survival. This study highlights the importance of using DNA-based methods to avoid inbreeding depression when errors exist in the pedigree.
Acute Effects of the Antibiotic Streptomycin on Neural Network Activity and Pharmacological Responses
Access: Use of this item is restricted to the UNT Community.
The purpose of this study is to find out that if antibiotic streptomycin decreases neuronal network activity or affects the pharmacological responses. The experiments in this study were conducted via MEA (multi-electrode array) technology which records neuronal activity from devices that have multiple small electrodes, serve as neural interfaces connecting neurons to electronic circuitry. The result of this study shows that streptomycin lowered the spike production of neuronal network, and also, sensitization was seen when neuronal network pre-exposed to streptomycin.
Developing a Forest Gap Model to Be Applied to a Watershed-scaled Landscape in the Cross Timbers Ecoregion Using a Topographic Wetness Index
A method was developed for extending a fine-scaled forest gap model to a watershed-scaled landscape, using the Eastern Cross Timbers ecoregion as a case study for the method. A topographic wetness index calculated from digital elevation data was used as a measure of hydrologic across the modeled landscape, and the gap model modified to have with a topographically-based hydrologic input parameter. The model was parameterized by terrain type units that were defined using combinations of USDA soil series and classes of the topographic wetness index. A number of issues regarding the sources, grid resolutions, and processing methods of the digital elevation data are addressed in this application of the topographic wetness index. Three different grid sizes, 5, 10, and 29 meter, from both LiDAR-derived and contour-derived elevation grids were used, and the grids were processed using both single-directional flow algorithm and bi-directional flow algorithm. The result of these different grids were compared and analyzed in context of their application in defining terrain types for the forest gap model. Refinements were made in the timescale of gap model’s weather model, converting it into a daily weather generator, in order to incorporate the effects of the new topographic/hydrologic input parameter. The precipitation model was converted to use a Markov model to initiate a sequence of wet and dry days for each month, and then daily precipitation amounts were determined using a gamma distribution. The output of the new precipitation model was analyzed and compared with a 100-year history of daily weather records at daily, monthly, and annual timescales. Model assumptions and requirements for biological parameters were thoroughly investigated and questioned. Often these biological parameters are based on little more than assumptions and intuition. An effort to base as many of the model’s biological parameters on measured data was made, including a new technique for estimating optimal volumetric growth rate by measuring tree rings. The gap model was set up to simulate various terrain types within the landscape.
Cloacal Microbiota of Captive-bred and Wild Attwater’s Prairie-chicken, Tympanuchus Cupido Attwateri
The Attwater’s prairie-chicken (Tympanuchus cupido attwateri; APC) is a species of grouse native to Texas coastal prairies and is on the critically endangered species list as a result of habitat destruction and overhunting. All of the current populations were captively bred and released into the wild. Survivorship for released APCs is very low, and individuals seldom survive to reproduce in the wild. One factor contributing to this may be an alteration in the gut microbiota as a result of captivity. Factors potentially influencing the gut microbial composition in captivity include antibiotic therapy, stress, and a predominantly commercially formulated diet. Recent studies have begun to shed light on the importance of the host microbial endosymbionts. Antibiotic administration, stress, diet, age, genotype and other factors have been shown to influence microbial populations in the gastrointestinal tracts of many different vertebrates. Sequencing of 16S rRNA gene amplicons on the Ion Torrent™ platform was used in this study to identify groups of bacteria in the cloacas as a surrogate for the gut microbiota in the APC. Antibiotic-treated and untreated birds, wild-hatched and captive-bred birds, and individuals sampled before and after release to the wild were examined. Significant differences were found between wild-hatched and captive raised birds both pre- and post release. In addition, there was extensive variation among the populations at the lower taxonomic ranks between individuals for each group of APCs. Principal coordinate analysis based on the weighted UniFrac distance metric further exhibited some clustering of individuals by treatment. These data suggest that captive breeding may have long-term effects on the cloacal microbiota of APCs with unknown consequences to their long-term health and survivorship.
Effects of a Water Conservation Education Program on Water Use in Single-family Homes in Dallas, Texas
The City of Dallas Environmental Education Initiative (EEI) is a hands-on, inquiry-based, K-12 water conservation education program that teaches students concepts about water and specific water conservation behaviors. Few descriptions and evaluations, especially quantitative in nature, of water conservation education programs have previously been conducted in the literature. This research measured the quantitative effects and impacts of the education program on water use in single-family homes in Dallas, Texas. A total of 2,122 students in 104 classrooms at three schools in the Dallas Independent School District received hands-on, inquiry-based water conservation education lessons and the average monthly water use (in gallons) in single-family homes was analyzed to measure whether or not there was a change in water use. The results showed that over a period of one calendar year the water use in the single-family homes within each school zone and throughout the entire research area in this study experienced a statistically significant decrease in water use of approximately 501 gallons per home per month (independent, t-test, p>0.001). Data from this research suggests that EEI is playing a role in decreasing the amount of water used for residential purposes. Additionally, this research demonstrates the use of a quantitative tool by which a water conservation education program’s effect on behavior change can be measured. This research shows great promise for reducing use and increasing the conservation of our world’s most precious resource.
A Multimedia Atlas of Dissection for Comparative Anatomy of the Vertebrates
Access: Use of this item is restricted to the UNT Community.
This interactive multimedia content is part of the thesis that was prepared for the degree of Master of Science in Biology: Traditional methods of teaching the laboratory course for Comparative Anatomy of the Vertebrates could be improved by applying current computer technology to construct an interactive, multimedial atlas of dissection. Five specimens used in comparative anatomy courses at most institutions were chosen as representative members of the Phylum Chordata: amphioxus, lamprey, dogfish shark, mud puppy, and cat. Specimens were dissected according to the modified method of Wischnitzer, 1993, and each stage was photographed with a Kodak DC120 digital zoom camera. These images were processed on a Power Macintosh 7600 computer with Adobe Photoshop v. 5.0. The atlas was constructed from these images using Macromedia Authorware v. 4.0.3. Each image contains a series of interactive objects that display a highlight and descriptive text as the cursor passes over each object.
Development of Enabling Technologies to Visualize the Plant Lipidome
Improvements in mass spectrometry (MS)-based strategies for characterizing the plant lipidome through quantitative and qualitative approaches such as shotgun lipidomics have substantially enhanced our understanding of the structural diversity and functional complexity of plant lipids. However, most of these approaches require chemical extractions that result in the loss of the original spatial context and cellular compartmentation for these compounds. To address this current limitation, several technologies were developed to visualize lipids in situ with detailed chemical information. A subcellular visualization approach, direct organelle MS, was developed for directly sampling and analyzing the triacylglycerol contents within purified lipid droplets (LDs) at the level of a single LD. Sampling of single LDs demonstrated seed lipid droplet-to-droplet variability in triacylglycerol (TAG) composition suggesting that there may be substantial variation in the intracellular packaging process for neutral lipids in plant tissues. A cellular and tissue visualization approach, MS imaging, was implemented and enhanced for visualizing the lipid distributions in oilseeds. In mature cotton seed embryos distributions of storage lipids (TAGs) and their phosphatidylcholine (PCs) precursors were distribution heterogeneous between the cotyledons and embryonic axis raising new questions about extent and regulation of oilseed heterogeneity. Extension of this methodology provides an avenue for understanding metabolism in cellular (perhaps even subcellular) context with substantial metabolic engineering implications. To visualize metabolite distributions, a free and customizable application, Metabolite Imager, was developed providing several tools for spatially-based chemical data analysis. These tools collectively enable new forms of visualizing the plant lipidome and should prove valuable toward addressing additional unanswered biological questions.
The Effect of Natural Gas Well Setback Distance on Drillable Land in the City of Denton, Texas
Access: Use of this item is restricted to the UNT Community.
Municipalities protect human health and environmental resources from impacts of urban natural gas drilling through setback distances; the regulation of distances between well sites and residences, freshwater wells, and other protected uses. Setback distances have increased over time, having the potential to alter the amount and geographical distribution of drillable land within a municipality, thereby having implications for future land use planning and increasing the potential for future incompatible land uses. This study geographically applies a range of setback distances to protected uses and freshwater wells in the city limits of Denton, Texas to investigate the effect on the amount of land remaining for future gas well development and production. Denton lies on the edge of a productive region of the Barnett Shale geological formation, coinciding with a large concentration of drillable land in the southwestern region of the study area. This region will have the greatest potential for impacts to future municipal development and land use planning as a result of future gas well development and higher setback standards. Given the relatively high acreage of drillable land in industrially zoned subcategory IC-G and the concern regarding gas well drilling in more populated areas, future drilling in IC-G, specifically in IC-G land cover classes mowed/grazed/agriculture and herbaceous, would have the least impact on residential uses and tree cover, as well as decreasing the potential for future incompatible land uses.
The Effects of Glyphosate Based Herbicides on Chick Embryo Development
Glyphosate based herbicides are among the most widely used herbicides in the world. The purpose of this study was to determine developmental toxicity of glyphosate, the active ingredient in the common herbicide Roundup, on developing chicken embryos. Few studies have examined toxic effects of glyphosate alone versus the full compound formulations of Roundup, which include adjuvants and surfactants. Adjutants and surfactants are added to aid in solubility and absorption of glyphosate. In this study chicken embryos were exposed at the air cell on embryonic day 6 to 19.8 or 9.9 mg / Kg egg mass of glyphosate in Roundup or glyphosate only. Chickens treated with 19.8 and 9.9 mg / Kg glyphosate in Roundup showed significant reduction in survivability compared to glyphosate alone treatments and controls. On embryonic day 18, embryos were sacrificed for evaluation of developmental toxicity using wet embryo mass, dry embryo mass, and yolk mass as indicators. Morphology measurements were taken on liver mass, heart mass, tibiotarsus length and beak length. Embryos treated with 19.8 mg / Kg glyphosate and 9.9 mg / Kg glyphosate in Roundup showed significant reductions in wet and dry embryo mass and yolk mass. Tibiotarsus length in 9.9 mg / Kg glyphosate in Roundup treatments were significantly reduced compared to 9.9 mg / Kg glyphosate treatments. Beak length was significantly reduced in 9.9 mg /Kg glyphosate in Roundup treatments compared to all other groups.
Effects of Natural/anthropogenic Stressors and a Chemical Contaminant on Pre and Post Mycorrhizal Colonization in Wetland Plants
Arbuscular mycorrhizal fungi, colonizing over 80% of all plants, were long thought absent in wetlands; however, recent studies have shown many wetland plants harbor arbuscular mycorrhizae (AM) and dark septate endophytes (DSE). Wetland services such as biodiversity, shoreline stabilization, water purification, flood control, etc. have been estimated to have a global value of $14.9 trillion. Recognition of these vital services is accompanied by growing concern for their vulnerability and continued loss, which has resulted in an increased need to understand wetland plant communities and mycorrhizal symbiosis. Factors regulating AM and DSE colonization need to be better understood to predict plant community response and ultimately wetland functioning when confronting natural and human induced stressors. This study focused on the effects of water quality, hydrology, sedimentation, and hurricanes on AM and DSE colonization in three wetland species (Taxodium distichum, Panicum hemitomon, and Typhal domingensis) and plant communities of coastal wetlands in Southeast Louisiana and effects of an antimicrobial biocide, triclosan (TCS), on AM (Glomus intraradices) spore germination, hyphal growth, hyphal branching, and colonization in fresh water wetland plants (Eclipta prostrata, Hibiscus laevis, and Sesbania herbacea) from bottom land hardwood forest in north central Texas. The former, mesocosm studies simulating coastal marsh vegetation ran for five years. In the latter studies, AM spores and wetland plants were exposed to 0 g/L, 0.4 g/L, and 4.0 g/L TCS concentrations in static renewal and flow through exposures for 21 and 30 days, respectively. AM and DSE colonization was significantly affected by individual and interactions of four independent variables in mesocosm experiments. Similarly, spore germination, hyphal growth, hyphal branching, and AM colonization in selected wetland plants were significantly lowered by exposure to the TCS at environmentally relevant concentrations. However, levels of effects were plant species and fungal propagules specific. My results showed that natural and human induced alterations in environmental factors and chemical contaminants can significantly impact levels of mycorrhizal spore germination, colonization, and spore density in coastal and freshwater wetland plants. The resulting impacts on plant community structure and ecosystem function require further study.
Tissue-specific Bioconcentration Factor of the Synthetic Steroid Hormone Medroxyprogesterone Acetate (Mpa) in the Common Carp, Cyprinus Carpia
Due to the wide spread occurrence of medroxyprogesterone acetate (MPA), a pharmaceutical compound, in wastewater effluent and surface waters, the objectives of this work were to determine the tissue specific uptake and bioconcentration factor (BCF) for MPA in common carp. BCFs were experimentally determined for MPA in fish using a 14-day laboratory test whereby carp where exposed to 100 μg/L of MPA for a 7-day period followed by a depuration phase in which fish were maintained in dechlorinated tap water for an additional 7 days. MPA concentrations in muscle, brain, liver and plasma were determined by liquid chromatography/mass spectrometry (LC/MS). The results from the experiment indicate that MPA can accumulate in fish, however, MPA is not considered to be bioaccumulative based on regulatory standards (BCF ≥ 1000). Although MPA has a low BCF value in common carp, this compound may cause reproductive effects in fish at environmentally relevant concentrations.
Developing a Collection Digitization Workflow for the Elm Fork Natural Heritage Museum
Natural history collections house immense amounts of data, but the majority of data is only accessible by locating the collection label, which is usually attached to the physical specimen. This method of data retrieval is time consuming and can be very damaging to fragile specimens. Digitizing the collections is the one way to reduce the time and potential damage related to finding the collection objects. The Elm Fork Natural Heritage Museum is a natural history museum located at the University of North Texas and contains collections of both vertebrate and invertebrate taxa, as well as plants. This project designed a collection digitization workflow for Elm Fork by working through digitizing the Benjamin B. Harris Herbarium. The collection was cataloged in Specify 6, a database program designed for natural history collection management. By working through one of the museum’s collections, the project was able to identify and address challenges related to digitizing the museum’s holdings in order to create robust workflows. The project also produced a series of documents explaining common processes in Specify and a data management plan.
Immunohistochemistry of the Gills of the Channel Catfish Ictalurus Punctatus: Cells and Neurochemicals That May Be Involved in the Control of Cardioventilatory Reflexes
Access: Use of this item is restricted to the UNT Community.
In teleost fishes the neurochemicals involved in sensing and responding to hypoxia are unresolved. Serotonergic branchial neuroepithelial cells (NECs) are putative O2 chemoreceptors believed to be homologous to the neural crest (NC) derived APUD (amine-precursor uptake and decarboxylation) pulmonary NECs and carotid body type-1 glomus cells. Branchial NECs contain serotonin (5-HT), thought to be central to the induction of the hypoxic cardioventilatory reflexes. However, application of 5-HT in vivo does not elicit cardioventilatory reflexes similar to those elicited by hypoxia. But previous in vitro neural recordings from glossopharyngeal (IX) afferents innervating O2 chemoreceptors in the trout gill show the same discharge response to hypoxic conditions as does that of acetylcholine (ACh) application. This evidence strongly supports the cholinergic hypothesis of chemoreceptor impulse origin rather than a serotonergic-induced impulse origin model. We therefore hypothesized that NECs contain ACh among other neurochemicals in cells belonging to the APUD series. Although serotonergic branchial NECs did not colocalize with ACh using immunohistochemical methods, several populations of ACh and/or tyrosine hydroxylase (TH) (catecholaminergic) positive, dopamine (DA) negative, cells were found throughout the second gill arch of the channel catfish Ictalurus punctatus. In addition, the NC derivation marker zn-12 labelled the HNK-1-like epitope (Human natural killer) expressed by lamellar pillar cells’ collagen column-associated pillar cell adhesion molecules (CC-PCAMs), evidence confirming their hypothesized NC origin.
Shortened in Vivo Bioconcentration Factor Testing in Cyprinus Carpio
Bioconcentration factor testing serves as the most valuable surrogate for the assessment of bioaccumulation. The assessment of potentially harmful chemicals is crucial to not only the health of aquatic environments, but to humans as well. Chemicals that possess the ability to persist in the environment or that have the potential to bioaccumulate, pose a greater risk to organisms that are exposed to these chemicals. The Organization for Economic Cooperation and Development Guideline 305 outlines specific protocols to run an accurate and reliable aquatic flow-through test. However, since its adoption in 1996, very few changes have been made to accommodate the endeavor to lowering the amount of test species to run one of these said tests. Running an aquatic flow-through test, according to 305, takes much time and money as well as numerous amounts of fish. Such burdens can be eliminated through simple modifications to the standard protocols. In this study, we propose an abbreviated study design for aquatic bioconcentration testing which effectively alleviates the burdens of running a flow-through test. Four chemicals were used individually to evaluate the usefulness of the proposed shortened design; 4-Nonyphenol, Chlorpyrifos, Musk Xylene, and DDT. The study consisted of exposing Cyprinus carpio for 7 days followed by 7 days of depuration, for a total of a 14-day study. Our results for each of the four compounds are consistent with literature values, thus, demonstrating that BCFk can be accurately predicted in an abbreviated in vivo test.
The Effect of Menthol on Nicotine Metabolism: a Cross Species Evaluation
The effect of menthol on nicotine metabolism was examined in liver S9 fractions of four different species and in the in vivo mouse model. The purpose of this study was to investigate three parameters: (1) biotransformation of nicotine to cotinine in various species (human, mouse, rat and trout) using in vitro methods; (2) to determine if the addition of menthol with nicotine altered biotransformation of nicotine to cotinine; (3) and to assess similar parameters in an in vivo mouse model. The major findings of this study include: (1) mice appear to metabolize nicotine, over time, in a manner similar to humans; (2) menthol decreased cotinine production, over time, after a single dose in mice; and (3) menthol increased cotinine production, over time, after repeated doses, in mice.
Relationships of Benthic Macroinvertebrate Community Structure with Land-use, Habitat, In-stream Water Chemistry, Depositional Sediment Biofilm Fatty Acids, and Surfactants in the Effluent Dominated Texas Trinity River
The Trinity River is an urbanized, effluent-dominated river, and is heavily relied upon for drinking water. The benthic macroinvertebrate community has been monitored for over 20 years, with the focus of this dissertation on three studies (1987-88, 2005, and 2011). Water quality improvement following dechlorination resulted in increased benthic metrics. Overall habitat quality, in-stream cover, surface water total organic carbon, sediment total organic carbon, near-field urban land-use, near-field forested land-use, surface water surfactant toxic units, and depositional sediment biofilm fatty acids all have statistically significant relationships with benthic macroinvertebrate metrics. These relationships are better defined with increased taxonomic resolution at the genus/species level for all benthic taxa, including Chironomidae and Oligochaeta. It is recommend that benthic identifications for state and city water quality assessments be done at the genus/species level. A novel method for quantifying depositional sediment biofilm fatty acids has been produced and tested in this dissertation. Benthic metrics are directly related to fatty acid profiles, with several essential fatty acids found only at upstream sites.
Effects of Airway Pressure, Hypercapnia, and Hypoxia on Pulmonary Vagal Afferents in the Alligator (Alligator Misssissippiensis)
The American alligator (Alligator mississippiensis) is an aquatic diving reptile with a periodic breathing pattern. Previous work has identified pulmonary stretch receptors (PSR), both rapidly- and slowly-adapting, and intrapulmonary chemoreceptors (IPCs) that modulate breathing patterns in alligators. The purpose of the present study was to identify the effects of prolonged lung inflation and deflation (simulated dives) on PSR and/or IPC firing characteristics in the alligator. The effects of airway pressure, hypercapnia, and hypoxia on dynamic and static responses of pulmonary stretch receptors (PSR) were studied in juvenile alligators (mean mass = 246 g) at 24°C. Receptor activity appeared to be a mixture of slowly-adapting PSRs (SARs) and rapidly-adapting PSRs (RARs) with varying thresholds and degrees of adaptation, but no CO2 sensitivity. Dives were simulated in order to character receptor activity before, during, and after prolonged periods of lung inflation and deflation. Some stretch receptors showed a change in dynamic response, exhibiting inhibition for several breaths after 1 min of lung inflation, but were unaffected by prolonged deflation. For SAR, the post-dive inhibition was inhibited by CO2 and hypoxia alone. These airway stretch receptors may be involved in recovery of breathing patterns and lung volume during pre- and post-diving behavior and apneic periods in diving reptiles. These results suggest that inhibition of PSR firing following prolonged inflation may promote post-dive ventilation in alligators.
Population Dynamics of Zebra Mussels (Dreissena Polymorpha) in a North Texas Reservoir: Implications for Invasions in the Southern United States
This dissertation has two main objectives: first, quantify the effects of environmental conditions on spatio-temporal spawning and larval dynamics of zebra mussels (Dreissena polymorpha [Pallas 1771]) in Lake Texoma, and second, quantify the effects of environmental conditions on survival, growth, and reproduction of young of the year (YOY) juvenile zebra mussels. These biological responses directly influence population establishment success and invasive spread dynamics. Reproductive output of the zebra mussel population in Lake Texoma was significantly related to water temperature and lake elevation. Annual maximum larval (veliger) density decreased significantly indicating a population crash, which was likely caused by thermal stress and variability of lake elevation. In 2011, temperatures peaked at 34.3°C and lake elevation decreased to the lowest level recorded during the previous 18 years, which desiccated a substantial number of settled mussels in littoral zones. Estimated mean date of first spawn in Lake Texoma was observed approximately 1.5 months earlier than in Lake Erie, and peak veliger densities were observed two months earlier. Veligers were observed in the deepest oxygenated water after lake stratification. During a 69-day in situ experiment during summer in Lake Texoma, age-specific mortality of zebra mussels was generally high until temperatures decreased to approximately 28°C, which was observed after lake turnover in late summer. No study organism died after temperatures decreased to less than 26°C, which indicates individuals that survive high summer temperatures are likely to persist into autumn/winter. Shell length growth and soft tissue growth rates were related to temperature and chlorophyll-a concentration, respectively. Growth rates of study organisms were among the highest ever reported for D. polymorpha. Water temperature and body size influenced reproduction of YOY zebra mussels in Lake Texoma. Fecundity of females were positively related to temperature; however, sperm production was negatively related to temperature, which indicates males could be more sensitive to physiologically-stressful conditions than females and could perform better in cooler waters. YOY mussels spawned up to approximately 40,000 eggs and 3.47E+08 sperm after a single-summer growing season. Reproductive effort and reproductive mass were independent of sex. YOY individuals from each study site (n = 5) were able to spawn viable gametes capable of sperm binding and egg cleavage, which provides the first evidence that YOY zebra mussels can successfully reproduce. Individual mortality of zebra mussels will likely be high in warm waters and intermittent, extreme droughts, which are observed more frequently at lower latitudes, can significantly reduce population sizes. However, rapid growth and single-season maturation can decrease generation times and could facilitate establishment and spread of zebra mussels in warm-water environments in the southern United States.
Molecular and Functional Characterization of Medicago Truncatula Npf17 Gene
Access: Use of this item is restricted to the UNT Community.
Legumes are unique among plants for their ability to fix atmospheric nitrogen with the help of soil bacteria rhizobia. Medicago truncatula is used as a model legume to study different aspects of symbiotic nitrogen fixation. M. truncatula, in association with its symbiotic partner Sinorhizobium meliloti, fix atmospheric nitrogen into ammonia, which the plant uses for amino acid biosynthesis and the bacteria get reduced photosynthate in return. M. truncatula NPF1.7 previously called MtNIP/LATD is required for symbiotic nitrogen fixing root nodule development and for normal root architecture. Mutations in MtNPF1.7 have defects in these processes. MtNPF1.7 encodes a member of the NPF family of transporters. Experimental results showing that MtNPF1.7 functioning as a high-affinity nitrate transporter are its expression restoring chlorate susceptibility to the Arabidopsis chl1-5 mutant and high nitrate transport in Xenopus laevis oocyte system. However, the weakest Mtnip-3 mutant allele also displays high-affinity nitrate transport in X. laevis oocytes and chlorate susceptibility to the Atchl1-5 mutant, suggesting that MtNPF1.7 might have another biochemical function. Experimental evidence shows that MtNPF1.7 also functions in hormone signaling. Constitutive expression of MtNPF1.7 in several species including M. truncatula results in plants with a robust growth phenotype. Using a synthetic auxin reporter, the presence of higher auxin in both the Mtnip-1 mutant and in M. truncatula plants constitutively expressing MtNPF1.7 was observed. Previous experiments showed MtNPF1.7 expression is hormone regulated and the MtNPF1.7 promoter is active in root and nodule meristems and in the vasculature. Two potential binding sites for an auxin response factors (ARFs) were found in the MtNPF1.7 promoter. Chromatin immunoprecipitation-qRT-PCR confirmed MtARF1 binding these sites. Mutating the MtARF1 binding sites increases MtNPF1.7 expression, suggesting a mechanism for auxin repression of MtNPF1.7. Consistent with these results, constitutive expression of an ARF in wild-type plants partially phenocopies Mtnip-1 mutants’ phenotypes.
Modeling the Effects of Chronic Toxicity of Pharmaceutical Chemicals on the Life History Strategies of Ceriodaphnia Dubia: a Multigenerational Study
Trace quantities of pharmaceuticals (including carbamazepine and sertraline) are continuously discharged into the environment, which causes concern among scientists and regulators regarding their potential long-term impacts on aquatic ecosystems. These compounds and their metabolites are continuously interacting with the orgranisms in various life stages, and may differentially influence development of embryo, larvae, juvenile, and adult stages. To fully understand the potential ecological risks of two candidate pharmaceutical chemicals (carbamazepine (CBZ) and sertraline (SERT)) exposure on survival, growth and reproduction of Ceriodaphnia dubia in three sucessive generations under static renewal toxicity test, a multigenerational approach was taken. Results indicate that SERT exposure showed higher sensitivity to chronic exposure to C. dubia growth and reproduction than CBZ exposure. The lowest concentration to affect fecundity and growth was at 50 µg L-1 SERT in the first two generations. These parameters become more sensitive during the third generation where the LOEC was 4.8 µg L-1. The effective concentrations (EC50) for the number of offspring per female, offspring body size, and dry weight were 17.2, 21.2, and 26.2 µg SERT L-1, respectively. Endpoints measured in this study demonstrate that chronic exposure of C. dubia to SERT leads to effects that occur at concentrations an order of magnitude higher than predicted environmental concentrations indicating potential transgenerationals effects. Additionally, a process-based dynamic energy budget (DEB) model is implemented to predict the simulated effects of chronic toxicity of SERT and CBZ to C. dubia individual behavior at laboratory condition. The model‘s output indicates the ecotoxicological mode of action of SERT exposure, which acts on feeding or assimilation with an effect that rapidly saturates at higher concentrations. Offspring size decreases with the toxic effects on feeding, and offspring number is thus less affected than total investment in reproduction. Consequently, CBZ affects direclty in reproduction which are captured by DEBtox model as increased embryonic hazard and reproduction cost as well as growth and maintenance costs. Furthermore, stress factor linearly increased not only with increasing chemical concentrations but also with exposure time. The DEBtox model establishes a cumulative life history consequence of multigenerational exposure to CBZ and SERT. This approach provides a tool to which to understand the effect of chemical to the individual organism and predict the population level effects in ecological risk assessment of the emerging contaminants.
Investigation of the Pharmacokinetics of Diazepam in Juvenile Channel Catfish (Ictalurus Punctatus)
The presence of pharmaceuticals in the environment is becoming an increasing regulatory and scientific concern. Thus, the metabolic profile and bioconcentration potential of diazepam, a model benzodiazepine, were examined, as well as effects on the endocrine system in channel catfish. Through the use of specific and non-specific cytochrome P450 (CYP450) inhibitors, it was determined that CYP3A-like enzymes may play a role in the biotransformation of diazepam into temazepam; however, the isoform(s) required for the formation of other metabolites is still unknown. Overall, only around 7-8% of diazepam is biotransformed into two known metabolites. Due to the lack of inherent metabolism of diazepam in channel catfish, further analysis was conducted to determine the tissue-specific bioconcentration potential of diazepam in catfish. Various tissues were analyzed for the presence of diazepam as well as metabolites and bioconcentration factors (BCF) were calculated, which were all well below regulatory threshold values (> 2000). Additionally, modulation of the endocrine system by diazepam was examined by measuring steroid hormone concentrations and analyzing mRNA expression of selected steroidogenic enzymes and receptors. Two steroidogenic enzymes were modulated following diazepam exposure, indicating potential endocrine disrupting properties of diazepam. Together, these data suggest that diazepam exhibits low metabolic transformation rates in channel catfish, which may lead to accumulation of benzodiazepine compounds that may negatively affect the endocrine system. However, further studies should be aimed at identifying other steroidogenic enzymes and/or receptors that may be modulated following diazepam exposure.
Origin and Role of Factor Viia
Access: Use of this item is restricted to the UNT Community.
Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, Factor VII and in small amounts in its activated form, Factor VIIa. However, the mechanism of initial generation of Factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases Factor VII activating protease, and hepsin play a role in activating Factor VII, however, it has remained controversial. In this work I estimated the levels of Factor VIIa and Factor VII for the first time in adult zebrafish plasma and also reevaluated the role of the above two serine proteases in activating Factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease did not reduce Factor VIIa levels while hepsin knockdown reduced Factor VIIa levels. After identifying role of hepsin in Factor VII activation in zebrafish, I wanted to identify novel serine proteases playing a role in Factor VII activation. However, a large scale knockdown of all serine proteases in zebrafish genome using available knockdown techniques is prohibitively expensive. Hence, I developed an inexpensive gene knockdown method which was validated with IIb gene knockdown, and knockdown all serine proteases in zebrafish genome. On performing the genetic screen I identified 2 novel genes, hepatocytes growth factor like and prostasin involved in Factor VII activation.
Designing Tools to Probe the Calcium-dependent Function of Arabidopsis Tonneau2
Access: Use of this item is restricted to the UNT Community.
Plants possess unique features in many aspects of development. One of these features is seen in cell wall placement during cytokinesis, which is determined by the position of the preprophase band (PPB) and the subsequent expansion of the phragmoplast that deposits the new cell wall. During phragmoplast expansion, the phragmoplast tracks to the cortical division site, which was delineated by the PPB. Thus the position of the PPB determines the orientation of the division plane. In Arabidopsis thaliana, TONNEAU2 (TON2) is required for PPB formation and has been shown to interact with a type A subunit of the PP2A phosphatase in the yeast two-hybrid system. In Arabidopsis tonneau2 (ton2) mutants, abnormalities of the cortical microtubule cytoskeleton, such as disorganization of the interphase microtubule array and lack of PPB formation before mitosis markedly affects cell shape and arrangement as well as overall plant morphology. Loss of dcd1/add1, the maize ton2 homologues gives rise to a similar phenotype in Zea mays. The TON2 protein has two EF hand domains which are calcium-binding sites. Since calcium has been known to play key roles in several areas of plant functioning, the following question was raised: “Does calcium binding contribute to the localization and function of TONNEAU at the PPB?” To address this question, a series of constructs were generated to determine if TON2 binds calcium. Additionally, Ca2+ binding sites were mutated in constructs containing the TON2 gene fused to GFP or YPF. These constructs were then transformed into ton2 mutant plants and the localization of TON2 fusion protein and whether the construct is capable of rescuing the mutant phenotype were observed. Although, localization of TON2 to the PPB was not observed, the presence of the constructs were confirmed in the transformed plants using selection markers and by observing fluorescence under a confocal microscope.
Field and Laboratory Fish Tissue Accumulation of Carbamazepine and Amiodarone
The goals of this dissertation work were to assess the bioaccumulation potential of carbamazepine and amiodarone, two widely used ionizable pharmaceutical compounds that possess mid-range and high LogD values, respectively, and to evaluate alternative methods to assess chemical accumulation in bluntnose minnows, catfish, and tilapia. Results indicated that carbamazepine does not appreciably bioaccumulate in fish tissue with BCFk and BAF carbamazepine values < 10. Amiodarone, however, with a log D of 5.87 at pH 7.4, accumulated in fish tissues with kinetic BCF values <2,400. Collectively, the data suggest that full and abbreviated laboratory-derived BCFs, BCFMs derived from S9 loss-of-parent assays, as well as field BAF values are similar for each of the two drugs. In summary, the results from this dissertation indicated: 1) The reduced design BCF test is a good estimate for the traditional OECD 305 test. 2) In vitro S9 metabolism assays provide comparable BCF estimates to the OECD 305 test. 3) Metabolism may play a large role in the accumulation of drugs in fish. 4) Reduced BCF tests and in vitro assays are cost effective and can reduce vertebrate testing.
Functional Characterization of Mtnip/latd’s Biochemical and Biological Function
Access: Use of this item is restricted to the UNT Community.
Symbiotic nitrogen fixation occurs in plants harboring nitrogen-fixing bacteria within the plant tissue. The most widely studied association is between the legumes and rhizobia. In this relationship the plant (legumes) provides the bacteria (rhizobia) with reduced carbon derived from photosynthesis in exchange for reduced atmospheric nitrogen. This allows the plant to survive in soil, which is low in available of nitrogen. Rhizobia infect and enter plant root and reside in organs known as nodules. In the nodules the bacteria fix atmospheric nitrogen. The association between the legume, Medicago truncatula and the bacteria Sinorhizobium meliloti, has been studied in detail. Medicago mutants that have defects in nodulation help us understand the process of nitrogen fixation better. One such mutant is the Mtnip-1. Mtnip-1 plants respond to S. meliloti by producing abnormal nodules in which numerous aberrant infection threads are produced, with very rare rhizobial release into host plant cells. The mutant plant Mtnip-1 has an abnormal defense-like response in root nodules as well as defects in lateral root development. Three alleles of the Mtnip/latd mutants, Mtnip-1, Mtlatd and Mtnip-3 show different degrees of severity in their phenotype. Phylogenetic analysis showed that MtNIP/LATD encodes a protein belonging to the NRT1(PTR) family of nitrate, peptide, dicarboxylate and phytohprmone transporters. Experiments with Mtnip/latd mutants demonstrats a defective nitrate response associated with low (250 μM) external nitrate concentration rather than high (5 mM) nitrate concentration. This suggests that the mutants have defective nitrate transport. To test if MtNIP/LATD was a nitrate transporter, Xenopus laevis oocytes and Arabidopsis thaliana mutant plants Atchl1-5, defective in a major nitrate transporter AtNRT1.1(CHL1), were used as surrogate expression systems. Heterologous expression of MtNIP/LATD in X. laevis oocytes and Atchl1-5 mutant plants conferred on them the ability to take up nitrate from external media with high affinity, thus demonstrating that MtNIP/LATD was a high affinity nitrate transporter. Km for MtNIP/LATD was determined to be approximately160 μM in the X. laevis system and 113 μM in the Arabidopsis Atchl1-5 mutant lines thus supporting the previous observation of MtNIP/LATD being a high affinity nitrate transporter. X. laevis expressing the mutant Mtnip-1 and Mtlatd, were unable to transport nitrate. However X. laevis oocytes, expressing the less severe mutant allele Mtnip-3 were able to transport nitrate suggesting another role of the Mtnip/latd besides high affinity nitrate transport. Experimental evidence suggested that MtNIP/LATD might transport another substrate beside nitrate. MtNIP/LATD levels are regulated by phytohormones. Experiments performed with ABA (abscisic acid), IAA (indole acetic acid) and histidine as substrates in X. laevis system show that the MtNIP/LATD mRNA injected oocytes efflux IAA but do not transport histidine or ABA. When wild type A17 and mutant Mtnip-1 and Mtnip-3 plants, grown in the presence of different sources of nitrogen were screened in herbicide chlorate, a structural analog of nitrate, the A17 and Mtnip-3 mutant showed levels of susceptibility that was different from mutant Mtnip-1 lines. Evidence suggested that the amount of chlorate transported into the plants were regulated by the C:N status of the A17 and Mtnip-3 plants. This regulation was missing in the Mtnip-1 lines thus suggesting a sensor function of MtNIP/LATD gene.
The Stoneflies (Plecoptera) of the Ozark and Ouachita Mountains
Collections of stoneflies (Plecoptera) were made at 603 stream sites from Nov. 1983 - May 1988 in the Ozark-Ouachita Mountain region, in relation to physiographic and vegetational characteristics. Examination of approximately 9000 vials from these collections, supplemented with material from major museums and other collectors, revealed 88 stonefly species in 8 families and 24 genera. Pearson's measure of association (R) showed there was a significant association between species present and each of the tested variables.
Pyrimidine Metabolism in Rhizobium: Physiological Aspects of Pyrimidine Salvage
The objective of this research was to study the pyrimidine salvage pathways of Rhizobium. Three approaches were used to define the pyrimidine salvage pathways operative in two species of Rhizobium, R. meliloti and R. leguminosarum . The first approach was to ascertain the pyrimidine bases and nucleosides that could satisfy the pyrimidine requirement of pyrimidine auxotrophs. Uracil, cytosine, uridine or cytidine all satisfied the absolute pyrimidine requirement. The second approach was to select for mutants resistant to 5-fluoropyrimidine analogues which block known steps in the interconversion of the pyrimidine bases and nucleosides. Mutants resistant to 5-fluorouracil lacked the enzyme uracil phosphoribosyltransferase (upp ) and could no longer use uracil to satisfy their pyrimidine requirement. Mutants resistant to 5-fluorocytosine, while remaining sensitive to 5- fluorouracil, lacked cytosine deaminase (cod) and thus could no longer use cytosine to satisfy their pyrimidine auxotrophy. The third approach used a reversed phase HPLC column to identify the products that accumulated when cytidine, uridine or cytosine was incubated with cell extracts of wild type and analogue resistant mutants of Rhizobium. When cytidine was incubated with cell extracts of Rhizobium wild type, uridine, uracil and cytosine were produced. This Indicated that Rhizobium had an active cytidine deaminase (cdd) and either uridine phosphorylase or uridine hydrolase. By dialyzing the extract and reincubating it with cytidine, uridine and uracil still appeared. This proved that it was a hydrolase ( nuh ) rather than a phosphorylase that degraded the nucleoside. Thus, Rhizobium was found to contain an active cytidine deaminase and cytosine deaminase with no uridine phosphorylase present. The nucleoside hydrolase was active with cytidine, uridine and to a far lesser extent with purines, adenosine and inosine. When high concentrations of cytidine were added to mutants devoid of hydrolase, cytosine was produced from cytidine - 5-monophosphate by the sequential action of uridine ( cytidine ) kinase and nucleoside monophosphate glycosylase. Both ft meliloti and ft leguminosarum had identical salvage pathways.
Measurement of Feedback Inhibition In Vivo and Selection of ATCase Feedback Altered Mutants in Salmonella typhimurium
Aspartate transcarbamoylase (ATCase; encoded by pyrBI genes) is one of the most studied regulatory enzymes in bacteria. It is feedback inhibited by cytidine triphosphate (CTP) and activated by adenosine triphosphate (ATP). Much is known about the catalytic site of the enzyme, not nearly as much about the regulatory site, to which CTP binds. Until now a positive selection for feedback-modified mutants was not available. The selection we have developed involves the use of a pyrA deletion in S. typhimurium. This strain lacks carbamoylphosphate and requires both a pyrimidine and arginine for growth. In this strain citrulline is used to satisfy the pyrimidine and arginine requirements. The minimal flow through the pyrimidine pathway from the citrulline-produced carbamoylphosphate is exquisitely sensitive to feedback control of ATCase by CTP. By elevating the CTP pool, via exogenous cytidine, in a strain that also contains a cytidine deaminase mutant (cdd) growth can be stopped completely, indicating 100% inhibition. It was therefore possible to measure in vivo feedback inhibition of ATCase among the citrulline users and to isolate a family of ATCase regulatory mutants with either modified or no response to effectors.
Validation of a Coupled Herbicide Fate and Target Plant Species Effects Model
A series of experiments provided data to parameterize and validate a coupled herbicide fate and target plant species effects model. This simulation model is currently designed to predict responses of water hyacinth populations to treatments of the dimethylamine formulation of 2,4- dichloro-phenoxy acetic acid (2,4-D -DMA). Experiments investigated 1) the response of water hyacinth to varying exposures of 2,4-D (DMA); 2) the role of water hyacinth density and herbicide interception in treatment effectiveness using 2,4-D (DMA); and 3) the importance of root exposure to obtain control of water hyacinth using 2,4- D (DMA). Results demonstrated the importance of leaf or canopy interception of 2,4-D (DMA) sprays in obtaining control of water hyacinth populations. The critical threshold plant tissue concentration of 2,4-D (DMA) required to elicit maximum mortality (98%) was estimated to be approximately 12 mg 2,4-D per kg water hyacinth tissue (wet weight). Root uptake apparently plays little or no role in the effectiveness of this herbicide for controlling water hyacinth growth. Validation trials illustrated the efficacy of the current model. The model was validated with data from a field operation. This research has provided considerable insight into optimal use of this auxin-type herbicide for control of water hyacinth, a monocotyledon.
Toxicological Characterization of Trinity River Sediments
Sediments in the Trinity River were chemically, physically and biologically characterized and assessed for toxicity. Laboratory bioassays were conducted to identify sediments which induced toxic responses in test organisms and to document these responses through time. Metal and organic contaminant concentrations in bottom sediments were measured. Relationships between these concentrations and biological responses observed in laboratory bioassays were determined. Toxicity identification / reduction methods were used to characterize sediment toxicants. Sediment oxygen demand was also measured in resuspended and undisturbed bottom sediments through time. The Background Sediment Chemistry Approach and the Sediment Bioassay Approach were used to assess sediment quality. Sediment toxicity was observed in whole sediment bioassays using Chironomus tentans as the test species. A relationship between sediment contaminant concentration and toxicity was observed in approximately sixty percent of the sediments. Oxygen demand of resuspended sediments was elevated in sediments at two locations on the river. Oxygen demand of undisturbed sediments was elevated at one location on the river. Characterization of sediment toxicants was conducted using EDTA, pH, and carbon treatments and manipulations of the sediments. Aeration tests were also used to evaluate the contribution of volatile organic contaminants to observed toxicity.
Interactions between Carotid and Cardiopulmonary Baroreceptor Populations in Men with Varied Levels of Maximal Aerobic Power
Reductions in baroreflex responsiveness have been thought to increase the prevalence of orthostatic hypotension in endurance trained athletes. To test this hypothesis, cardiovascular responses to orthostatic stress, cardiopulmonary and carotid baroreflex responsiveness, and the effect of cardiopulmonary receptor deactivation on carotid baroreflex responses were examined in 24 men categorized by maximal aerobic power (V02max) into one of three groups: high fit (HF, V0-2max=67.0±1.9 ml•kg^-1•min^-1), moderately fit (MF, V0-2max=50.9±1.4 ml•kg^-1•min^-1), and low fit (LF, V0-2max=38.9±1.5 ml•kg^-1•min^-1). Orthostatic stress was induced using lower body negative pressure (LBNP) at -5, -10, -15, -20, -35, and -50 torr. Cardiopulmonary baroreflex responsiveness was assessed as the slope of the relationship between forearm vascular resistance (FVR, strain gauge plethysmography) and central venous pressure (CVP, dependent arm technigue) during LBNP<-35 torr. Carotid baroreflex responsiveness was assessed as the change in heart rate (HR, electrocardiography) or mean arterial pressure (MAP, radial artery catheter) elicited by 600 msec pulses of neck pressure and neck suction (NP/NS) from +40 to -70 torr. Pressures were applied using a lead collar wrapped about the subjects' necks during held expiration. Stimulus response data were fit to a logistic model and the parameters describing the curve were compared using two-factor ANOVA. The reductions CVP, mean (MAP), systolic, and pulse pressures during LBNP were similar between groups (P<0.05). However, diastolic blood pressure increased during LBNP m all but the HF group. (P<0.05). The slope of the FVR/CVP relationship did not differ between groups, nor did the form of the carotid-cardiac baroreflex stimulus response curve change during LBNP. changes in HR elicited with NP/NS were not different between groups (£>0.05). The range of the MAP stimulus response curve, however, was significantly less in the HP group compared to either the MP or LF group (£<0.05). These data imply that carotid baroreflex control of HR is unaltered by endurance exercise training, but carotid baroreflex control of blood pressure is impaired significantly, predisposing athletes to faintness.
Effects of Water Quality, Instream Toxicity, and Habitat Variability on Fish Assemblages in the Trinity River, Texas
The Trinity River flows through the Dallas-Ft. Worth Metroplex in north central Texas where it receives effluents from numerous point sources including seven large regional wastewater treatment facilities. Historically, the Trinity River has been impacted by massive wastewater loadings which often constitute > 80% of the total river discharge during low flow periods. Normally, high mass loadings correspond to the summer months, compounding the effects of a naturally stressful period, characterized by high temperatures and low dissolved oxygen concentrations. Samples from 12 stations were collected quarterly over an 18 month period from the Trinity River and two tributaries. Water samples were analyzed for a variety of water quality variables, including metals, priority pollutants, pesticides, and general water quality parameters. Water samples were also tested for acute and subchronic effects with several test species. Fish were collected at each station and assemblages were characterized using traditional classification techniques and the Index of Biotic Integrity. In addition, sediment samples were assessed for toxic effects which could have adversely impacted fish recruitment and in situ biomonitoring experiments were performed. Quantitative habitat characterization analyses were performed to gain additional information that could possibly explains differences in fish assemblage structure related to habitat variability. Data were analyzed using regression, univariate, multivariate, and descriptive statistical techniques and new approaches for analyzing impact assessment data were discussed. Results indicated that the most substantial impacts on fish assemblages were confined to a segment of the river where a sequence of point sources, in close proximity to each other, were overloading the river's capacity to sufficiently dilute and/or detoxify the effluent. Data also indicated the presence of episodic toxicity from nonpoint sources. In addition, toxic effects in sediment samples and differences in habitat were detected and may have contributed to measured differences among fish assemblages in the Trinity River.
Metabolic Engineering in Plants to Control Source/sink Relationship and Biomass Distribution
Traditional methods like pruning and breeding have historically been used in crop production to divert photoassimilates to harvested organs, but molecular biotechnology is now poised to significantly increase yield by manipulating resource partitioning. It was hypothesized that metabolic engineering in targeted sink tissues can favor resource partitioning to increase harvest. Raffinose Family Oligosaccharides (RFOs) are naturally occurring oligosaccharides that are widespread in plants and are responsible for carbon transport, storage and protection against cold and drought stress. Transgenic plants (GRS47, GRS63) were engineered to generate and transport more RFOs through the phloem than the wild type plants. The transgenic lines produced more RFOs and the RFOs were also detected in their phloem exudates. But the 14CO2 labeling and subsequent thin layer chromatography analysis showed that the RFOs were most likely sequestered in an inactive pool and accumulate over time. Crossing GRS47 and GRS63 lines with MIPS1 plants (that produces more myo-inositol, a substrate in the RFO biosynthetic pathway) did not significantly increase the RFOs in the crossed lines. For future manipulation of RFO degradation in sink organs, the roles of the endogenous α-galactosidases were analyzed. The alkaline α-galactosidases (AtSIP1 and AtSIP2 in Arabidopsis) are most likely responsible for digesting RFOs in the cytoplasm and may influence the ability to manipulate RFO levels in engineered plants. Atsip1/2 (AtSIP1/AtSIP2 double-knockout plants) were generated and phenotypically characterized based on seed germination patterns, flowering time, and sugar content to observe the impact on RFO sugar levels. The observations and analysis from these lines provide a basis for further insight in the manipulation of resource allocation between source and sink tissues in plants for future research.
Comparative Phyto-uptake Across Distribution Coefficients of Pharmaceutical Compounds and Aquatic Macrophytes: Carbamazepine and Amiodarone Uptake in Lemna Spp
Few studies have been conducted on the effectiveness of phytoremediation of pharmaceutical compounds, although the persistent and non-acutely toxic nature of many of these compounds in today's water bodies may yield an ideal application for this practice. To quantify the potential effectiveness of plant uptake, kinetic and proportional bioconcentration factors (BCFk, and BCFp, respectively) in nanograms (ng) carbamazepine and amiodarone per gram (g) wet weight plant tissue for Lemna spp. were determined utilizing a 14-day continuous flow-through study. Samples were analyzed using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) running in positive ion mode. Kinetic BCF was estimated at 0.538, while proportional BCF was estimated at 0.485. Kinetic BCF for the amiodarone study was estimated at 23.033, whereas proportional BCF was estimated at 41.340. Possible contamination of the C18 column and peristaltic pump failure may have impacted uptake results. In light of variability and current lack of research in the field, this work should be considered exploratory rather than conclusive.
Manipulating Sucrose Proton Symporters to Understand Phloem Loading
Phloem vascular tissues transport sugars synthesized by photosynthesis in mature leaves by a process called phloem loading in source tissues and unloading in sink tissues. Phloem loading in source leaves is catalyzed by Suc/H+ symporters (SUTs) which are energized by proton motive force. In Arabidopsis the principal and perhaps exclusive SUT catalyzing phloem loading is AtSUC2. In mutant plants harboring a T-DNA insertion in each of the functional SUT-family members, only Atsuc2 mutants demonstrate overtly debilitated phloem transport. Analysis of a mutant allele (Atsuc2-4) of AtSUC2 with a T-DNA insertion in the second intron showed severely stunted phenotype similar to previously analyzed Atsuc2 null alleles. However unlike previous alleles Atsuc2-4 produced viable seeds. Analysis of phloem specific promoters showed that promoter expression was regulated by Suc concentration. Unlike AtSUC2p, heterologous promoter CoYMVp was not repressed under high Suc conc. Further analysis was conducted using CoYMVp to test the capacity of diverse clades in SUT-gene family for transferring Suc in planta in Atsuc2 - / - mutant background. AtSUC1 and ZmSUT1 from maize complemented Atsuc2 mutant plants to the highest level compared to all other transporters. Over-expression of the above SUTs in phloem showed enhanced Suc loading and transport, but against expectations, plants were stunted. The implications of SUT over-expression to enhance phloem transport and loading are discussed and how it induces a perception of phosphate imbalance is presented.
Quantifying Forest Vertical Structure to Determine Bird Habitat Quality in the Greenbelt Corridor, Denton, Tx
This study presents the integration of light detection and range (LiDAR) and hyperspectral remote sensing to create a three-dimensional bird habitat map in the Greenbelt Corridor of the Elm Fork of the Trinity River. This map permits to examine the relationship between forest stand structure, landscape heterogeneity, and bird community composition. A biannual bird census was conducted at this site during the breeding seasons of 2009 and 2010. Census data combined with the three-dimensional map suggest that local breeding bird abundance, community structure, and spatial distribution patterns are highly influenced by vertical heterogeneity of vegetation surface. For local breeding birds, vertical heterogeneity of canopy surface within stands, connectivity to adjacent forest patches, largest forest patch index, and habitat (vegetation) types proved to be the most influential factors to determine bird community assemblages. Results also highlight the critical role of secondary forests to increase functional connectivity of forest patches. Overall, three-dimensional habitat descriptions derived from integrated LiDAR and hyperspectral data serve as a powerful bird conservation tool that shows how the distribution of bird species relates to forest composition and structure at various scales.
Synthetic Peptides Model Instability of Cardiac Myosin Subfragment-2
Hypertrophic cardiomyopathy (HCM), a heart-related abnormality, is the most prevalent cause of sudden death in young athletes at sporting events. A cluster of cardiomyopathy mutations are localized in β-cardiac myosin at the N-terminal region of subfragment-2. Using resonance energy transfer probes, a synthetic peptide model system was developed to study stability of the coiled coil (S2 fragment) structure by determining monomer-dimer equilibrium of the peptide. Fluorescence resonance energy transfer and MacroModel software suite were used to obtain distance measurements along with measurement of coiled coil formation. The model peptide was used to characterize the effects of disease-causing-mutations and examine potential candidate drugs (polyamines) to counteract effects of mutations causing HCM. Distance measurements between donor and acceptor probes obtained by computational simulation and fluorescence resonance energy transfer (FRET) were consistent. Measurements also agreed with simulations of unlabeled wildtype, indicating coiled coil structural stability of the peptide. Interaction of the site-specific antibody with the peptide strongly inhibited dimerization and destabilized coiled coil structure of the peptide. Presence of negatively charged glutamate residues in the region of subfragment-2 strongly suggested a potential interaction site for positively charged polyamines. Binding of certain polyamines, such as poly-L-Lysine 11 residues and poly-D-Lysine 17 residues, demonstrated the ability to enhance dimerization and improve stability of the coiled coil structure, while some other polyamines were shown to have insignificant impact on the structure. In an attempt to characterize the effect of HCM-causing-mutations, peptides containing E924K mutation and lethal mutation E930 deletion were synthesized. Fluorescence resonance probes were conjugated to the mutant peptides to determine coiled coil formation. Results obtained from both dynamic simulations and resonance energy transfer experiments indicated that these mutations strongly inhibit dimerization, and thus, destabilize coiled coil structure of the peptide. Further experiments were conducted using heterodimers containing a chain of wildtype and a chain of mutant peptide. Both E924K & Edel930 mutations destabilized coiled coil formation and prevented dimerization. This peptide model system would provide a promising tool for drug development targeting HCM-causing-mutations along the S2 region of myosin.
Endocrine Disruption of Levonorgestrel in Early-life Stages of Fathead Minnows, Pimephales Promelas
Pharmaceuticals have routinely been detected in the environment resulting in a growing concern about whether these drugs could elicit effects on aquatic organisms. The concerns are centered on the highly conserved nature of mammalian therapeutic targets in fish. These pharmaceuticals are found at very low levels in the environment, which can result in sub-lethal effects in aquatic organisms. Therefore, 28 d early-life stage studies were conducted on six pharmaceuticals to assess their impacts on survival and growth fathead minnow larvae. Two pharmaceuticals tested, carbamazepine and fenofibrate, resulted in no alterations to survival and growth. However, amiodarone, clozapine, dexamethasone, and levonorgestrel (LNG) reduced survival at concentrations tested with LNG being the most potent at 462 ng/L. Survival was increased with amiodarone and clozapine; however LNG significantly decreased growth at 86 ng/L. Therefore, the most potent pharmaceutical tested was the synthetic progestin LNG with survival and growth impacts at concentrations less than 1 μg/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 d ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, and FSH were significantly down-regulated following 28 d exposure to both 16.3 and 86.9 ng/L LNG. Also, CYP19a expression was significantly down-regulated at 86.9 and 2392 ng/L LNG. Subsequently, a second study examined time periods that may be most sensitive (e.g., windows of sensitivity) for FHM larvae exposed to LNG. Larvae were exposed to a single concentration of LNG (i.e. LOECgrowth of 86.2 ng/L as determined in the 28 d ELS study) for different time periods starting with fertilized egg through 28 dph. Growth and mRNA expression of the four differentially expressed transcripts from the first study were measured. Regardless of the duration of exposure, LNG significantly decreased growth in fathead minnow larvae at day 28. For both 20β-HSD and CYP19a, mRNA expression was decreased following exposure to LNG; however, these transcripts returned to baseline levels after removal of LNG. 3β-HSD and FSH showed similar trends after exposure to LNG with 7-14 d and 14-28 d exposures exhibiting a decrease in expression; however, FSH expression returned to baseline once removed for LNG exposure. Based on these data, 3β-HSD was the only transcript to remain down regulated after LNG exposure. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. However, these changes in endocrine related responses may not directly correlate to the changes in growth demonstrated with LNG exposure to fathead minnows. Therefore, additional research is warranted to ascertain additional mechanisms, either endocrine related or non-endocrine functions, related to changes in growth of larval fathead minnows.
DNA Typing of HLA-B by PCR with Primer Mixes Utilizing Sequence-Specific Primers
The aim of this study was to design a resolution typing system for the HLA-B gene. This technique involves a one-step PCR reaction utilizing genomic DNA and sequence-specific primers to determine the specificity of each allele and to produce a larger primer data base ideal for serological analysis. The application of this technique to serological analysis can improve serology detection which is currently hindered by antibody cross-reactivity and the unavailability of useful typing reagents.
Nicotinic Acetylcholine Receptor α3 mRNA in Rat Visual System After Monocular Deprivation
In situ hybridization was used to examine effects of monocular enucleation on nicotinic acetylcholine receptor subunit cc3 mRNA in the rat dLGNand visual cortex. After 28 days postoperative, there were no significant differences in α3 mRNA density between the contralateral (deprived) and ipsilateral (non-deprived) sides. The lack of obvious effects of visual deprivation on α3 mRNA density suggests that other factors, possibly intrinsic to dLGNand visual cortex, govern the postnatal expression of α3 mRNA.
Nucleotide Sequence of a Bovine Arginine Transfer RNA Gene
A single plaque-pure lambda clone designated λBA84 that hybridized to a ˆ32P-labeled bovine arginine tRNA was isolated from a bovine genomic library harbored in a lambda bacteriophage vector. A 2.3-kilobase segment of this clone was found to contain an arginine transfer RNAccg gene by Southern blot hybridization analysis and dideoxyribonucleotide DNA sequencing. This gene contains the characteristic RNA polymerase III split promoter sequence found in all eukaryotic tRNAs and a potential RNA polymerase III termination site, consisting of four consecutive thymine residues, in the 3'-flanking region. Several possible cis-acting promoter elements were found within the 5'-flanking region of the sequenced gene. The function of these elements, if any, is unknown.
Subcellular Localization of N-acylphosphatidyl-ethanolamine Synthase in Cotyledons of Cotton Seedlings
N-acylation of phosphatidylethanolamine (PE) with free fatty acids catalyzed by N-acyl phosphatidylethanolamine (NAPE) synthase was reported in cotyledons of 24-h-old cotton seedlings. Here I report subcellular localization of this enzyme. Differential centrifugation, sucrose density gradient fractionation,aqueous two-phase partitioning and electron microscopy techniques were utilized to elucidate subcellular site(s) of NAPE synthase. Marker enzymes were used to locate organelles in subcellular fractions. Differential centrifugation indicated that NAPE synthase is present in more than one organelle and it is a membrane bound enzyme. Sucrose density gradient fractionations indicated that NAPE synthase is present in membranes derived from endoplasmic reticulum (ER),Golgi and possibly plasma membrane (PM) but not mitochondria, glyoxysomes or plastids. Aqueous two-phase partitioning experiments with cotton and spinach tissues supported these results but Goigi appeared to be the major site of NAPE synthesis. Electron microscopy of subcellular fractions was used to examine isolated fractions to provide visual confirmation of our biochemical results. Collectively, these results indicate that NAPE is synthesized in plant ER, Golgi and possibly PM.
Pyrimidine Biosynthesis in the Genus Streptomyces : Characterization of Aspartate Transcarbamoylase and Its Interaction with Other Pyrimidine Enzymes
Aspartate transcarbamoylase (ATCase) of Streptomyces was characterized and its interaction with other pyrimidine enzymes explored.