You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Computer Science
3GPP Long Term Evolution LTE Scheduling
Future generation cellular networks are expected to deliver an omnipresent broadband access network for an endlessly increasing number of subscribers. Long term Evolution (LTE) represents a significant milestone towards wireless networks known as 4G cellular networks. A key feature of LTE is the implementation of enhanced Radio Resource Management (RRM) mechanism to improve the system performance. The structure of LTE networks was simplified by diminishing the number of the nodes of the core network. Also, the design of the radio protocol architecture is quite unique. In order to achieve high data rate in LTE, 3rd Generation Partnership Project (3GPP) has selected Orthogonal Frequency Division Multiplexing (OFDM) as an appropriate scheme in terms of downlinks. However, the proper scheme for an uplink is the Single-Carrier Frequency Domain Multiple Access due to the peak-to-average-power-ratio (PAPR) constraint. LTE packet scheduling plays a primary role as part of RRM to improve the system’s data rate as well as supporting various QoS requirements of mobile services. The major function of the LTE packet scheduler is to assign Physical Resource Blocks (PRBs) to mobile User Equipment (UE). In our work, we formed a proposed packet scheduler algorithm. The proposed scheduler algorithm acts based on the number of UEs attached to the eNodeB. To evaluate the proposed scheduler algorithm, we assumed two different scenarios based on a number of UEs. When the number of UE is lower than the number of PRBs, the UEs with highest Channel Quality Indicator (CQI) will be assigned PRBs. Otherwise, the scheduler will assign PRBs based on a given proportional fairness metric. The eNodeB’s throughput is increased when the proposed algorithm was implemented. digital.library.unt.edu/ark:/67531/metadc490046/
Boosting for Learning From Imbalanced, Multiclass Data Sets
Access: Use of this item is restricted to the UNT Community.
In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared to several state-of-the-art algorithms for imbalanced, multi-class classification problems. More importantly, the sensitivity improvement of the minority classes using RegBoost is accompanied with the improvement of the overall accuracy for all classes. With unpredictability regularization, a diverse group of classifiers are created and the maximum accuracy improvement reaches above 24%. Using stratified undersampling, RegBoost exhibits the best efficiency. The reduction in computational cost is significant reaching above 50%. As the volume of training data increase, the gain of efficiency with the proposed method becomes more significant. digital.library.unt.edu/ark:/67531/metadc407775/
Design and Analysis of Novel Verifiable Voting Schemes
Free and fair elections are the basis for democracy, but conducting elections is not an easy task. Different groups of people are trying to influence the outcome of the election in their favor using the range of methods, from campaigning for a particular candidate to well-financed lobbying. Often the stakes are too high, and the methods are illegal. Two main properties of any voting scheme are the privacy of a voter’s choice and the integrity of the tally. Unfortunately, they are mutually exclusive. Integrity requires making elections transparent and auditable, but at the same time, we must preserve a voter’s privacy. It is always a trade-off between these two requirements. Current voting schemes favor privacy over auditability, and thus, they are vulnerable to voting fraud. I propose two novel voting systems that can achieve both privacy and verifiability. The first protocol is based on cryptographical primitives to ensure the integrity of the final tally and privacy of the voter. The second protocol is a simple paper-based voting scheme that achieves almost the same level of security without usage of cryptography. digital.library.unt.edu/ark:/67531/metadc407785/
Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics
The spread of infectious diseases has been a public concern throughout human history. Historic recorded data has reported the severity of infectious disease epidemics in different ages. Ancient Greek physician Hippocrates was the first to analyze the correlation between diseases and their environment. Nowadays, health authorities are in charge of planning strategies that guarantee the welfare of citizens. The simulation of contagion scenarios contributes to the understanding of the epidemic behavior of diseases. Computational models facilitate the study of epidemics by integrating disease and population data to the simulation. The use of detailed demographic and geographic characteristics allows researchers to construct complex models that better resemble reality and the integration of these attributes permits us to understand the rules of interaction. The interaction of individuals with similar characteristics forms synthetic structures that depict clusters of interaction. The synthetic environments facilitate the study of the spread of infectious diseases in diverse scenarios. The characteristics of the population and the disease concurrently affect the local and global epidemic progression. Every cluster’ epidemic behavior constitutes the global epidemic for a clustered population. By understanding the correlation between structured populations and the spread of a disease, current dissertation research makes possible to identify risk groups of specific characteristics and devise containment strategies that facilitate health authorities to improve mitigation strategies. digital.library.unt.edu/ark:/67531/metadc407831/
Privacy Management for Online Social Networks
One in seven people in the world use online social networking for a variety of purposes -- to keep in touch with friends and family, to share special occasions, to broadcast announcements, and more. The majority of society has been bought into this new era of communication technology, which allows everyone on the internet to share information with friends. Since social networking has rapidly become a main form of communication, holes in privacy have become apparent. It has come to the point that the whole concept of sharing information requires restructuring. No longer are online social networks simply technology available for a niche market; they are in use by all of society. Thus it is important to not forget that a sense of privacy is inherent as an evolutionary by-product of social intelligence. In any context of society, privacy needs to be a part of the system in order to help users protect themselves from others. This dissertation attempts to address the lack of privacy management in online social networks by designing models which understand the social science behind how we form social groups and share information with each other. Social relationship strength was modeled using activity patterns, vocabulary usage, and behavioral patterns. In addition, automatic configuration for default privacy settings was proposed to help prevent new users from leaking personal information. This dissertation aims to mobilize a new era of social networking that understands social aspects of human network, and uses that knowledge to honor users' privacy. digital.library.unt.edu/ark:/67531/metadc283816/
Efficient Algorithms and Framework for Bandwidth Allocation, Quality-of-Service Provisioning and Location Management in Mobile Wireless Computing
The fusion of computers and communications has promised to herald the age of information super-highway over high speed communication networks where the ultimate goal is to enable a multitude of users at any place, access information from anywhere and at any time. This, in a nutshell, is the goal envisioned by the Personal Communication Services (PCS) and Xerox's ubiquitous computing. In view of the remarkable growth of the mobile communication users in the last few years, the radio frequency spectrum allocated by the FCC (Federal Communications Commission) to this service is still very limited and the usable bandwidth is by far much less than the expected demand, particularly in view of the emergence of the next generation wireless multimedia applications like video-on-demand, WWW browsing, traveler information systems etc. Proper management of available spectrum is necessary not only to accommodate these high bandwidth applications, but also to alleviate problems due to sudden explosion of traffic in so called hot cells. In this dissertation, we have developed simple load balancing techniques to cope with the problem of tele-traffic overloads in one or more hot cells in the system. The objective is to ease out the high channel demand in hot cells by borrowing channels from suitable cold cells and by proper assignment (or, re-assignment) of the channels among the users. We also investigate possible ways of improving system capacity by rescheduling bandwidth in case of wireless multimedia traffic. In our proposed scheme, traffic using multiple channels releases one or more channels to increase the carried traffic or throughput in the system. Two orthogonal QoS parameters, called carried traffic and bandwidth degradation, are identified and a cost function describing the total revenue earned by the system from a bandwidth degradation and call admission policy, is formulated. A channel sharing scheme is proposed for co-existing real-time and non-real-time traffic and analyzed using a Markov modulated Poisson process (MMPP) based queueing model. The location management problem in mobile computing deals with the problem of a combined management of location updates and paging in the network, both of which consume scarce network resources like bandwidth, CPU cycles etc. An easily implementable location update scheme is developed which considers per-user mobility pattern on top of the conventional location area based approach and computes an update strategy for each user by minimizing the average location management cost. The cost optimization problem is elegantly solved using a genetic algorithm. digital.library.unt.edu/ark:/67531/metadc278885/
A Unifying Version Model for Objects and Schema in Object-Oriented Database System
There have been a number of different versioning models proposed. The research in this area can be divided into two categories: object versioning and schema versioning. In this dissertation, both problem domains are considered as a single unit. This dissertation describes a unifying version model (UVM) for maintaining changes to both objects and schema. UVM handles schema versioning operations by using object versioning techniques. The result is that the UVM allows the OODBMS to be much smaller than previous systems. Also, programmers need know only one set of versioning operations; thus, reducing the learning time by half. This dissertation shows that UVM is a simple but semantically sound and powerful version model for both objects and schema. digital.library.unt.edu/ark:/67531/metadc279222/
Multiresolutional/Fractal Compression of Still and Moving Pictures
The scope of the present dissertation is a deep lossy compression of still and moving grayscale pictures while maintaining their fidelity, with a specific goal of creating a working prototype of a software system for use in low bandwidth transmission of still satellite imagery and weather briefings with the best preservation of features considered important by the end user. digital.library.unt.edu/ark:/67531/metadc278779/
Temporal Connectionist Expert Systems Using a Temporal Backpropagation Algorithm
Representing time has been considered a general problem for artificial intelligence research for many years. More recently, the question of representing time has become increasingly important in representing human decision making process through connectionist expert systems. Because most human behaviors unfold over time, any attempt to represent expert performance, without considering its temporal nature, can often lead to incorrect results. A temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems, has been introduced. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications. A temporal backpropagation algorithm which supports the model has been developed. The model along with the temporal backpropagation algorithm makes it extremely practical to define any artificial neural network application. Also, an approach that can be followed to decrease the memory space used by weight matrix has been introduced. The algorithm was tested using a medical connectionist expert system to show how best we describe not only the disease but also the entire course of the disease. The system, first, was trained using a pattern that was encoded from the expert system knowledge base rules. Following then, series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The first series of experiments was done to determine if the training process worked as predicted. In the second series of experiments, the weight matrix in the trained system was defined as a function of time intervals before presenting the system with the learned patterns. The result of the two experiments indicate that both approaches produce correct results. The only difference between the two results was that compressing the weight matrix required more training epochs to produce correct results. To get a measure of the correctness of the results, an error measure which is the value of the error squared was summed over all patterns to get a total sum of squares. digital.library.unt.edu/ark:/67531/metadc278824/
Computational Complexity of Hopfield Networks
There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network. digital.library.unt.edu/ark:/67531/metadc278272/
Intrinsic and Extrinsic Adaptation in a Simulated Combat Environment
Genetic algorithm and artificial life techniques are applied to the development of challenging and interesting opponents in a combat-based computer game. Computer simulations are carried out against an idealized human player to gather data on the effectiveness of the computer generated opponents. digital.library.unt.edu/ark:/67531/metadc278231/
Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique
DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets. digital.library.unt.edu/ark:/67531/metadc277629/
Symplectic Integration of Nonseparable Hamiltonian Systems
Numerical methods are usually necessary in solving Hamiltonian systems since there is often no closed-form solution. By utilizing a general property of Hamiltonians, namely the symplectic property, all of the qualities of the system may be preserved for indefinitely long integration times because all of the integral (Poincare) invariants are conserved. This allows for more reliable results and frequently leads to significantly shorter execution times as compared to conventional methods. The resonant triad Hamiltonian with one degree of freedom will be focused upon for most of the numerical tests because of its difficult nature and, moreover, analytical results exist whereby useful comparisons can be made. digital.library.unt.edu/ark:/67531/metadc278485/
A Theoretical Network Model and the Incremental Hypercube-Based Networks
The study of multicomputer interconnection networks is an important area of research in parallel processing. We introduce vertex-symmetric Hamming-group graphs as a model to design a wide variety of network topologies including the hypercube network. digital.library.unt.edu/ark:/67531/metadc277860/
A Multi-Time Scale Learning Mechanism for Neuromimic Processing
Learning and representing and reasoning about temporal relations, particularly causal relations, is a deep problem in artificial intelligence (AI). Learning such representations in the real world is complicated by the fact that phenomena are subject to multiple time scale influences and may operate with a strange attractor dynamic. This dissertation proposes a new computational learning mechanism, the adaptrode, which, used in a neuromimic processing architecture may help to solve some of these problems. The adaptrode is shown to emulate the dynamics of real biological synapses and represents a significant departure from the classical weighted input scheme of conventional artificial neural networks. Indeed the adaptrode is shown, by analysis of the deep structure of real synapses, to have a strong structural correspondence with the latter in terms of multi-time scale biophysical processes. Simulations of an adaptrode-based neuron and a small network of neurons are shown to have the same learning capabilities as invertebrate animals in classical conditioning. Classical conditioning is considered a fundamental learning task in animals. Furthermore, it is subject to temporal ordering constraints that fulfill the criteria of causal relations in natural systems. It may offer clues to the learning of causal relations and mechanisms for causal reasoning. The adaptrode is shown to solve an advanced problem in classical conditioning that addresses the problem of real world dynamics. A network is able to learn multiple, contrary associations that separate in time domains, that is a long-term memory can co-exist with a short-term contrary memory without destroying the former. This solves the problem of how to deal with meaningful transients while maintaining long-term memories. Possible applications of adaptrode-based neural networks are explored and suggestions for future research are made. digital.library.unt.edu/ark:/67531/metadc278467/
A Highly Fault-Tolerant Distributed Database System with Replicated Data
Because of the high cost and impracticality of a high connectivity network, most recent research in transaction processing has focused on a distributed replicated database system. In such a system, multiple copies of a data item are created and stored at several sites in the network, so that the system is able to tolerate more crash and communication failures and attain higher data availability. However, the multiple copies also introduce a global inconsistency problem, especially in a partitioned network. In this dissertation a tree quorum algorithm is proposed to solve this problem, imposing a logical tree structure along with dynamic system reconfiguration on all the copies of each data item. The proposed algorithm can be viewed as a dynamic voting technique which, with the help of an appropriate concurrency control algorithm, exhibits the major advantages of quorum-based replica control algorithms and of the available copies algorithm, so that a single copy is read for a read operation and a quorum of copies is written for a write operation. In addition, read and write quorums are computed dynamically and independently. As a result expensive read operations, like those that require several copies of a data item to be read in most quorum schemes, are eliminated. Furthermore, the message costs of read and write operations are reduced by the use of smaller quorum sizes. Quorum sizes can be reduced to a constant in a lightly loaded system, and log n in a failure-free network, as well as [n +1/2] in a partitioned network in a heavily loaded system. On average, our algorithm requires fewer messages than the best known tree quorum algorithm, while still maintaining the same upper bound on quorum size. One-copy serializability is guaranteed with higher data availability and highest degree of fault tolerance (up to n - 1 site failures). digital.library.unt.edu/ark:/67531/metadc278403/
Recognition of Face Images
The focus of this dissertation is a methodology that enables computer systems to classify different up-front images of human faces as belonging to one of the individuals to which the system has been exposed previously. The images can present variance in size, location of the face, orientation, facial expressions, and overall illumination. The approach to the problem taken in this dissertation can be classified as analytic as the shapes of individual features of human faces are examined separately, as opposed to holistic approaches to face recognition. The outline of the features is used to construct signature functions. These functions are then magnitude-, period-, and phase-normalized to form a translation-, size-, and rotation-invariant representation of the features. Vectors of a limited number of the Fourier decomposition coefficients of these functions are taken to form the feature vectors representing the features in the corresponding vector space. With this approach no computation is necessary to enforce the translational, size, and rotational invariance at the stage of recognition thus reducing the problem of recognition to the k-dimensional clustering problem. A recognizer is specified that can reliably classify the vectors of the feature space into object classes. The recognizer made use of the following principle: a trial vector is classified into a class with the greatest number of closest vectors (in the sense of the Euclidean distance) among all vectors representing the same feature in the database of known individuals. A system based on this methodology is implemented and tried on a set of 50 pictures of 10 individuals (5 pictures per individual). The recognition rate is comparable to that of most recent results in the area of face recognition. The methodology presented in this dissertation is also applicable to any problem of pattern recognition where patterns can be represented as a collection of black shapes on the white background. digital.library.unt.edu/ark:/67531/metadc277785/
Efficient Linked List Ranking Algorithms and Parentheses Matching as a New Strategy for Parallel Algorithm Design
The goal of a parallel algorithm is to solve a single problem using multiple processors working together and to do so in an efficient manner. In this regard, there is a need to categorize strategies in order to solve broad classes of problems with similar structures and requirements. In this dissertation, two parallel algorithm design strategies are considered: linked list ranking and parentheses matching. digital.library.unt.edu/ark:/67531/metadc278153/
A Mechanism for Facilitating Temporal Reasoning in Discrete Event Simulation
This research establishes the feasibility and potential utility of a software mechanism which employs artificial intelligence techniques to enhance the capabilities of standard discrete event simulators. As background, current methods of integrating artificial intelligence with simulation and relevant research are briefly reviewed. digital.library.unt.edu/ark:/67531/metadc278352/
Using Normal Deduction Graphs in Common Sense Reasoning
This investigation proposes a powerful formalization of common sense knowledge based on function-free normal deduction graphs (NDGs) which form a powerful tool for deriving Horn and non-Horn clauses without functions. Such formalization allows common sense reasoning since it has the ability to handle not only negative but also incomplete information. digital.library.unt.edu/ark:/67531/metadc277922/
Using Extended Logic Programs to Formalize Commonsense Reasoning
In this dissertation, we investigate how commonsense reasoning can be formalized by using extended logic programs. In this investigation, we first use extended logic programs to formalize inheritance hierarchies with exceptions by adopting McCarthy's simple abnormality formalism to express uncertain knowledge. In our representation, not only credulous reasoning can be performed but also the ambiguity-blocking inheritance and the ambiguity-propagating inheritance in skeptical reasoning are simulated. In response to the anomalous extension problem, we explore and discover that the intuition underlying commonsense reasoning is a kind of forward reasoning. The unidirectional nature of this reasoning is applied by many reformulations of the Yale shooting problem to exclude the undesired conclusion. We then identify defeasible conclusions in our representation based on the syntax of extended logic programs. A similar idea is also applied to other formalizations of commonsense reasoning to achieve such a purpose. digital.library.unt.edu/ark:/67531/metadc278054/
Modeling Alcohol Consumption Using Blog Data
How do the content and writing style of people who drink alcohol beverages stand out from non-drinkers? How much information can we learn about a person's alcohol consumption behavior by reading text that they have authored? This thesis attempts to extend the methods deployed in authorship attribution and authorship profiling research into the domain of automatically identifying the human action of drinking alcohol beverages. I examine how a psycholinguistics dictionary (the Linguistics Inquiry and Word Count lexicon, developed by James Pennebaker), together with Kenneth Burke's concept of words as symbols of human action, and James Wertsch's concept of mediated action provide a framework for analyzing meaningful data patterns from the content of blogs written by consumers of alcohol beverages. The contributions of this thesis to the research field are twofold. First, I show that it is possible to automatically identify blog posts that have content related to the consumption of alcohol beverages. And second, I provide a framework and tools to model human behavior through text analysis of blog data. digital.library.unt.edu/ark:/67531/metadc271843/
Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks
Computational modeling is of fundamental significance in mapping possible disease spread, and designing strategies for its mitigation. Conventional contact networks implement the simulation of interactions as random occurrences, presenting public health bodies with a difficult trade off between a realistic model granularity and robust design of intervention strategies. Recently, researchers have been investigating the use of agent-based models (ABMs) to embrace the complexity of real world interactions. At the same time, theoretical approaches provide epidemiologists with general optimization models in which demographics are intrinsically simplified. The emerging study of affiliation networks and co-affiliation networks provide an alternative to such trade off. Co-affiliation networks maintain the realism innate to ABMs while reducing the complexity of contact networks into distinctively smaller k-partite graphs, were each partition represent a dimension of the social model. This dissertation studies the optimization of intervention strategies for infectious diseases, mainly distributed in school systems. First, concepts of synthetic populations and affiliation networks are extended to propose a modified algorithm for the synthetic reconstruction of populations. Second, the definition of multi-coaffiliation networks is presented as the main social model in which risk is quantified and evaluated, thereby obtaining vulnerability indications for each school in the system. Finally, maximization of the mitigation coverage and minimization of the overall cost of intervention strategies are proposed and compared, based on centrality measures. digital.library.unt.edu/ark:/67531/metadc271860/
Automated Classification of Emotions Using Song Lyrics
This thesis explores the classification of emotions in song lyrics, using automatic approaches applied to a novel corpus of 100 popular songs. I use crowd sourcing via Amazon Mechanical Turk to collect line-level emotions annotations for this collection of song lyrics.  I then build classifiers that rely on textual features to automatically identify the presence of one or more of the following six Ekman emotions: anger, disgust, fear, joy, sadness and surprise. I compare different classification systems and evaluate the performance of the automatic systems against the manual annotations. I also introduce a system that uses data collected from the social network Twitter. I use the Twitter API to collect a large corpus of tweets manually labeled by their authors for one of the six emotions of interest. I then compare the classification of emotions obtained when training on data automatically collected from Twitter versus data obtained through crowd sourced annotations. digital.library.unt.edu/ark:/67531/metadc177253/
3D Reconstruction Using Lidar and Visual Images
In this research, multi-perspective image registration using LiDAR and visual images was considered. 2D-3D image registration is a difficult task because it requires the extraction of different semantic features from each modality. This problem is solved in three parts. The first step involves detection and extraction of common features from each of the data sets. The second step consists of associating the common features between two different modalities. Traditional methods use lines or orthogonal corners as common features. The third step consists of building the projection matrix. Many existing methods use global positing system (GPS) or inertial navigation system (INS) for an initial estimate of the camera pose. However, the approach discussed herein does not use GPS, INS, or any such devices for initial estimate; hence the model can be used in places like the lunar surface or Mars where GPS or INS are not available. A variation of the method is also described, which does not require strong features from both images but rather uses intensity gradients in the image. This can be useful when one image does not have strong features (such as lines) or there are too many extraneous features. digital.library.unt.edu/ark:/67531/metadc177193/
A Programming Language For Concurrent Processing
This thesis is a proposed solution to the problem of including an effective interrupt mechanism in the set of concurrent- processing primitives of a block-structured programming language or system. The proposed solution is presented in the form of a programming language definition and model. The language is called TRIPLE. digital.library.unt.edu/ark:/67531/metadc164005/
Multi-perspective, Multi-modal Image Registration and Fusion
Multi-modal image fusion is an active research area with many civilian and military applications. Fusion is defined as strategic combination of information collected by various sensors from different locations or different types in order to obtain a better understanding of an observed scene or situation. Fusion of multi-modal images cannot be completed unless these two modalities are spatially aligned. In this research, I consider two important problems. Multi-modal, multi-perspective image registration and decision level fusion of multi-modal images. In particular, LiDAR and visual imagery. Multi-modal image registration is a difficult task due to the different semantic interpretation of features extracted from each modality. This problem is decoupled into three sub-problems. The first step is identification and extraction of common features. The second step is the determination of corresponding points. The third step consists of determining the registration transformation parameters. Traditional registration methods use low level features such as lines and corners. Using these features require an extensive optimization search in order to determine the corresponding points. Many methods use global positioning systems (GPS), and a calibrated camera in order to obtain an initial estimate of the camera parameters. The advantages of our work over the previous works are the following. First, I used high level-features, which significantly reduce the search space for the optimization process. Second, the determination of corresponding points is modeled as an assignment problem between a small numbers of objects. On the other side, fusing LiDAR and visual images is beneficial, due to the different and rich characteristics of both modalities. LiDAR data contain 3D information, while images contain visual information. Developing a fusion technique that uses the characteristics of both modalities is very important. I establish a decision-level fusion technique using manifold models. digital.library.unt.edu/ark:/67531/metadc149562/
Automatic Tagging of Communication Data
Globally distributed software teams are widespread throughout industry. But finding reliable methods that can properly assess a team's activities is a real challenge. Methods such as surveys and manual coding of activities are too time consuming and are often unreliable. Recent advances in information retrieval and linguistics, however, suggest that automated and/or semi-automated text classification algorithms could be an effective way of finding differences in the communication patterns among individuals and groups. Communication among group members is frequent and generates a significant amount of data. Thus having a web-based tool that can automatically analyze the communication patterns among global software teams could lead to a better understanding of group performance. The goal of this thesis, therefore, is to compare automatic and semi-automatic measures of communication and evaluate their effectiveness in classifying different types of group activities that occur within a global software development project. In order to achieve this goal, we developed a web-based component that can be used to help clean and classify communication activities. The component was then used to compare different automated text classification techniques on various group activities to determine their effectiveness in correctly classifying data from a global software development team project. digital.library.unt.edu/ark:/67531/metadc149611/
A Smooth-turn Mobility Model for Airborne Networks
In this article, I introduce a novel airborne network mobility model, called the Smooth Turn Mobility Model, that captures the correlation of acceleration for airborne vehicles across time and spatial coordinates. E?ective routing in airborne networks (ANs) relies on suitable mobility models that capture the random movement pattern of airborne vehicles. As airborne vehicles cannot make sharp turns as easily as ground vehicles do, the widely used mobility models for Mobile Ad Hoc Networks such as Random Waypoint and Random Direction models fail. Our model is realistic in capturing the tendency of airborne vehicles toward making straight trajectory and smooth turns with large radius, and whereas is simple enough for tractable connectivity analysis and routing design. digital.library.unt.edu/ark:/67531/metadc149603/
Cuff-less Blood Pressure Measurement Using a Smart Phone
Access: Use of this item is restricted to the UNT Community.
Blood pressure is vital sign information that physicians often need as preliminary data for immediate intervention during emergency situations or for regular monitoring of people with cardiovascular diseases. Despite the availability of portable blood pressure meters in the market, they are not regularly carried by people, creating a need for an ultra-portable measurement platform or device that can be easily carried and used at all times. One such device is the smartphone which, according to comScore survey is used by 26.2% of the US adult population. the mass production of these phones with built-in sensors and high computation power has created numerous possibilities for application development in different domains including biomedical. Motivated by this capability and their extensive usage, this thesis focuses on developing a blood pressure measurement platform on smartphones. Specifically, I developed a blood pressure measurement system on a smart phone using the built-in camera and a customized external microphone. the system consists of first obtaining heart beats using the microphone and finger pulse with the camera, and finally calculating the blood pressure using the recorded data. I developed techniques for finding the best location for obtaining the data, making the system usable by all categories of people. the proposed system resulted in accuracies between 90-100%, when compared to traditional blood pressure meters. the second part of this thesis presents a new system for remote heart beat monitoring using the smart phone. with the proposed system, heart beats can be transferred live by patients and monitored by physicians remotely for diagnosis. the proposed blood pressure measurement and remote monitoring systems will be able to facilitate information acquisition and decision making by the 9-1-1 operators. digital.library.unt.edu/ark:/67531/metadc115102/
Rapid Prototyping and Design of a Fast Random Number Generator
Information in the form of online multimedia, bank accounts, or password usage for diverse applications needs some form of security. the core feature of many security systems is the generation of true random or pseudorandom numbers. Hence reliable generators of such numbers are indispensable. the fundamental hurdle is that digital computers cannot generate truly random numbers because the states and transitions of digital systems are well understood and predictable. Nothing in a digital computer happens truly randomly. Digital computers are sequential machines that perform a current state and move to the next state in a deterministic fashion. to generate any secure hash or encrypted word a random number is needed. But since computers are not random, random sequences are commonly used. Random sequences are algorithms that generate a pattern of values that appear to be random but after some time start repeating. This thesis implements a digital random number generator using MATLAB, FGPA prototyping, and custom silicon design. This random number generator is able to use a truly random CMOS source to generate the random number. Statistical benchmarks are used to test the results and to show that the design works. Thus the proposed random number generator will be useful for online encryption and security. digital.library.unt.edu/ark:/67531/metadc115036/
A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics
Epidemics have caused major human and monetary losses through the course of human civilization. It is very important that epidemiologists and public health personnel are prepared to handle an impending infectious disease outbreak. the ever-changing demographics, evolving infrastructural resources of geographic regions, emerging and re-emerging diseases, compel the use of simulation to predict disease dynamics. By the means of simulation, public health personnel and epidemiologists can predict the disease dynamics, population groups at risk and their geographic locations beforehand, so that they are prepared to respond in case of an epidemic outbreak. As a consequence of the large numbers of individuals and inter-personal interactions involved in simulating infectious disease spread in a region such as a county, sizeable amounts of data may be produced that have to be analyzed. Methods to visualize this data would be effective in facilitating people from diverse disciplines understand and analyze the simulation. This thesis proposes a framework to simulate and visualize the spread of an infectious disease in a population of a region such as a county. As real-world populations have a non-homogeneous demographic and spatial distribution, this framework models the spread of an infectious disease based on population of and geographic distance between census blocks; social behavioral parameters for demographic groups. the population is stratified into demographic groups in individual census blocks using census data. Infection spread is modeled by means of local and global contacts generated between groups of population in census blocks. the strength and likelihood of the contacts are based on population, geographic distance and social behavioral parameters of the groups involved. the disease dynamics are represented on a geographic map of the region using a heat map representation, where the intensity of infection is mapped to a color scale. This framework provides a tool for public health personnel and epidemiologists to run what-if analyses on disease spread in specific populations and plan for epidemic response. By the means of demographic stratification of population and incorporation of geographic distance and social behavioral parameters into the modeling of the outbreak, this framework takes into account non-homogeneity in demographic mix and spatial distribution of the population. Generation of contacts per population group instead of individuals contributes to lowering computational overhead. Heat map representation of the intensity of infection provides an intuitive way to visualize the disease dynamics. digital.library.unt.edu/ark:/67531/metadc115099/
Rapid Prototyping and Design of a Fast Random Number Generator
Information in the form of online multimedia, bank accounts, or password usage for diverse applications needs some form of security. the core feature of many security systems is the generation of true random or pseudorandom numbers. Hence reliable generators of such numbers are indispensable. the fundamental hurdle is that digital computers cannot generate truly random numbers because the states and transitions of digital systems are well understood and predictable. Nothing in a digital computer happens truly randomly. Digital computers are sequential machines that perform a current state and move to the next state in a deterministic fashion. to generate any secure hash or encrypted word a random number is needed. But since computers are not random, random sequences are commonly used. Random sequences are algorithms that generate a pattern of values that appear to be random but after some time start repeating. This thesis implements a digital random number generator using MATLAB, FGPA prototyping, and custom silicon design. This random number generator is able to use a truly random CMOS source to generate the random number. Statistical benchmarks are used to test the results and to show that the design works. Thus the proposed random number generator will be useful for online encryption and security. digital.library.unt.edu/ark:/67531/metadc115040/
GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction
In the United States, smartphone ownership surpassed 69.5 million in February 2011 with a large portion of those users (20%) downloading applications (apps) that enhance the usability of a device by adding additional functionality. a large percentage of apps are written specifically to utilize the geographical position of a mobile device. One of the prime factors in developing location prediction models is the use of historical data to train such a model. with larger sets of training data, prediction algorithms become more accurate; however, the use of historical data can quickly become a downfall if the GPS stream is not collected or processed correctly. Inaccurate or incomplete or even improperly interpreted historical data can lead to the inability to develop accurately performing prediction algorithms. As GPS chipsets become the standard in the ever increasing number of mobile devices, the opportunity for the collection of GPS data increases remarkably. the goal of this study is to build a comprehensive system that addresses the following challenges: (1) collection of GPS data streams in a manner such that the data is highly usable and has a reduction in errors; (2) processing and reduction of the collected data in order to prepare it and make it highly usable for the creation of prediction algorithms; (3) creation of prediction/labeling algorithms at such a level that they are viable for commercial use. This study identifies the key research problems toward building the CaPPture (collection, processing, prediction) system. digital.library.unt.edu/ark:/67531/metadc115089/
Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers
Two applications of a binary tree data type based on a simple pairing function (a bijection between natural numbers and pairs of natural numbers) are explored. First, the tree is used to encode natural numbers, and algorithms that perform basic arithmetic computations are presented along with formal proofs of their correctness. Second, using this "canonical" representation as a base type, algorithms for encoding and decoding additional isomorphic data types of other mathematical constructs (sets, sequences, etc.) are also developed. An experimental application to a memory management system is constructed and explored using these isomorphic types. A practical analysis of this system's runtime complexity and space savings are provided, along with a proof of concept framework for both applications of the binary tree type, in the Java programming language. digital.library.unt.edu/ark:/67531/metadc103323/
The Design Of A Benchmark For Geo-stream Management Systems
The recent growth in sensor technology allows easier information gathering in real-time as sensors have grown smaller, more accurate, and less expensive. The resulting data is often in a geo-stream format continuously changing input with a spatial extent. Researchers developing geo-streaming management systems (GSMS) require a benchmark system for evaluation, which is currently lacking. This thesis presents GSMark, a benchmark for evaluating GSMSs. GSMark provides a data generator that creates a combination of synthetic and real geo-streaming data, a workload simulator to present the data to the GSMS as a data stream, and a set of benchmark queries that evaluate typical GSMS functionality and query performance. In particular, GSMark generates both moving points and evolving spatial regions, two fundamental data types for a broad range of geo-stream applications, and the geo-streaming queries on this data. digital.library.unt.edu/ark:/67531/metadc103392/
Investigating the Extractive Summarization of Literary Novels
Abstract Due to the vast amount of information we are faced with, summarization has become a critical necessity of everyday human life. Given that a large fraction of the electronic documents available online and elsewhere consist of short texts such as Web pages, news articles, scientific reports, and others, the focus of natural language processing techniques to date has been on the automation of methods targeting short documents. We are witnessing however a change: an increasingly larger number of books become available in electronic format. This means that the need for language processing techniques able to handle very large documents such as books is becoming increasingly important. This thesis addresses the problem of summarization of novels, which are long and complex literary narratives. While there is a significant body of research that has been carried out on the task of automatic text summarization, most of this work has been concerned with the summarization of short documents, with a particular focus on news stories. However, novels are different in both length and genre, and consequently different summarization techniques are required. This thesis attempts to close this gap by analyzing a new domain for summarization, and by building unsupervised and supervised systems that effectively take into account the properties of long documents, and outperform the traditional extractive summarization systems typically addressing news genre. digital.library.unt.edu/ark:/67531/metadc103298/
Measuring Semantic Relatedness Using Salient Encyclopedic Concepts
While pragmatics, through its integration of situational awareness and real world relevant knowledge, offers a high level of analysis that is suitable for real interpretation of natural dialogue, semantics, on the other end, represents a lower yet more tractable and affordable linguistic level of analysis using current technologies. Generally, the understanding of semantic meaning in literature has revolved around the famous quote ``You shall know a word by the company it keeps''. In this thesis we investigate the role of context constituents in decoding the semantic meaning of the engulfing context; specifically we probe the role of salient concepts, defined as content-bearing expressions which afford encyclopedic definitions, as a suitable source of semantic clues to an unambiguous interpretation of context. Furthermore, we integrate this world knowledge in building a new and robust unsupervised semantic model and apply it to entail semantic relatedness between textual pairs, whether they are words, sentences or paragraphs. Moreover, we explore the abstraction of semantics across languages and utilize our findings into building a novel multi-lingual semantic relatedness model exploiting information acquired from various languages. We demonstrate the effectiveness and the superiority of our mono-lingual and multi-lingual models through a comprehensive set of evaluations on specialized synthetic datasets for semantic relatedness as well as real world applications such as paraphrase detection and short answer grading. Our work represents a novel approach to integrate world-knowledge into current semantic models and a means to cross the language boundary for a better and more robust semantic relatedness representation, thus opening the door for an improved abstraction of meaning that carries the potential of ultimately imparting understanding of natural language to machines. digital.library.unt.edu/ark:/67531/metadc84212/
Toward a Data-Type-Based Real Time Geospatial Data Stream Management System
The advent of sensory and communication technologies enables the generation and consumption of large volumes of streaming data. Many of these data streams are geo-referenced. Existing spatio-temporal databases and data stream management systems are not capable of handling real time queries on spatial extents. In this thesis, we investigated several fundamental research issues toward building a data-type-based real time geospatial data stream management system. The thesis makes contributions in the following areas: geo-stream data models, aggregation, window-based nearest neighbor operators, and query optimization strategies. The proposed geo-stream data model is based on second-order logic and multi-typed algebra. Both abstract and discrete data models are proposed and exemplified. I further propose two useful geo-stream operators, namely Region By and WNN, which abstract common aggregation and nearest neighbor queries as generalized data model constructs. Finally, I propose three query optimization algorithms based on spatial, temporal, and spatio-temporal constraints of geo-streams. I show the effectiveness of the data model through many query examples. The effectiveness and the efficiency of the algorithms are validated through extensive experiments on both synthetic and real data sets. This work established the fundamental building blocks toward a full-fledged geo-stream database management system and has potential impact in many applications such as hazard weather alerting and monitoring, traffic analysis, and environmental modeling. digital.library.unt.edu/ark:/67531/metadc68070/
A Wireless Traffic Surveillance System Using Video Analytics
Video surveillance systems have been commonly used in transportation systems to support traffic monitoring, speed estimation, and incident detection. However, there are several challenges in developing and deploying such systems, including high development and maintenance costs, bandwidth bottleneck for long range link, and lack of advanced analytics. In this thesis, I leverage current wireless, video camera, and analytics technologies, and present a wireless traffic monitoring system. I first present an overview of the system. Then I describe the site investigation and several test links with different hardware/software configurations to demonstrate the effectiveness of the system. The system development process was documented to provide guidelines for future development. Furthermore, I propose a novel speed-estimation analytics algorithm that takes into consideration roads with slope angles. I prove the correctness of the algorithm theoretically, and validate the effectiveness of the algorithm experimentally. The experimental results on both synthetic and real dataset show that the algorithm is more accurate than the baseline algorithm 80% of the time. On average the accuracy improvement of speed estimation is over 3.7% even for very small slope angles. digital.library.unt.edu/ark:/67531/metadc68005/
Graph-Based Keyphrase Extraction Using Wikipedia
Keyphrases describe a document in a coherent and simple way, giving the prospective reader a way to quickly determine whether the document satisfies their information needs. The pervasion of huge amount of information on Web, with only a small amount of documents have keyphrases extracted, there is a definite need to discover automatic keyphrase extraction systems. Typically, a document written by human develops around one or more general concepts or sub-concepts. These concepts or sub-concepts should be structured and semantically related with each other, so that they can form the meaningful representation of a document. Considering the fact, the phrases or concepts in a document are related to each other, a new approach for keyphrase extraction is introduced that exploits the semantic relations in the document. For measuring the semantic relations between concepts or sub-concepts in the document, I present a comprehensive study aimed at using collaboratively constructed semantic resources like Wikipedia and its link structure. In particular, I introduce a graph-based keyphrase extraction system that exploits the semantic relations in the document and features such as term frequency. I evaluated the proposed system using novel measures and the results obtained compare favorably with previously published results on established benchmarks. digital.library.unt.edu/ark:/67531/metadc67939/
Techniques for Improving Uniformity in Direct Mapped Caches
Directly mapped caches are an attractive option for processor designers as they combine fast lookup times with reduced complexity and area. However, directly-mapped caches are prone to higher miss-rates as there are no candidates for replacement on a cache miss, hence data residing in a cache set would have to be evicted to the next level cache. Another issue that inhibits cache performance is the non-uniformity of accesses exhibited by most applications: some sets are under-utilized while others receive the majority of accesses. This implies that increasing the size of caches may not lead to proportionally improved cache hit rates. Several solutions that address cache non-uniformity have been proposed in the literature. These techniques have been proposed over the past decade and each proposal independently claims the benefit of reduced conflict misses. However, because the published results use different benchmarks and different experimental setups, (there is no established frame of reference for comparing these results) it is not easy to compare them. In this work we report a side-by-side comparison of these techniques. Finally, we propose and Adaptive-Partitioned cache for multi-threaded applications. This design limits inter-thread thrashing while dynamically reducing traffic to heavily accessed sets. digital.library.unt.edu/ark:/67531/metadc68025/
Anchor Nodes Placement for Effective Passive Localization
Access: Use of this item is restricted to the UNT Community.
Wireless sensor networks are composed of sensor nodes, which can monitor an environment and observe events of interest. These networks are applied in various fields including but not limited to environmental, industrial and habitat monitoring. In many applications, the exact location of the sensor nodes is unknown after deployment. Localization is a process used to find sensor node's positional coordinates, which is vital information. The localization is generally assisted by anchor nodes that are also sensor nodes but with known locations. Anchor nodes generally are expensive and need to be optimally placed for effective localization. Passive localization is one of the localization techniques where the sensor nodes silently listen to the global events like thunder sounds, seismic waves, lighting, etc. According to previous studies, the ideal location to place anchor nodes was on the perimeter of the sensor network. This may not be the case in passive localization, since the function of anchor nodes here is different than the anchor nodes used in other localization systems. I do extensive studies on positioning anchor nodes for effective localization. Several simulations are run in dense and sparse networks for proper positioning of anchor nodes. I show that, for effective passive localization, the optimal placement of the anchor nodes is at the center of the network in such a way that no three anchor nodes share linearity. The more the non-linearity, the better the localization. The localization for our network design proves better when I place anchor nodes at right angles. digital.library.unt.edu/ark:/67531/metadc33132/
Measuring Vital Signs Using Smart Phones
Smart phones today have become increasingly popular with the general public for its diverse abilities like navigation, social networking, and multimedia facilities to name a few. These phones are equipped with high end processors, high resolution cameras, built-in sensors like accelerometer, orientation-sensor, light-sensor, and much more. According to comScore survey, 25.3% of US adults use smart phones in their daily lives. Motivated by the capability of smart phones and their extensive usage, I focused on utilizing them for bio-medical applications. In this thesis, I present a new application for a smart phone to quantify the vital signs such as heart rate, respiratory rate and blood pressure with the help of its built-in sensors. Using the camera and a microphone, I have shown how the blood pressure and heart rate can be determined for a subject. People sometimes encounter minor situations like fainting or fatal accidents like car crash at unexpected times and places. It would be useful to have a device which can measure all vital signs in such an event. The second part of this thesis demonstrates a new mode of communication for next generation 9-1-1 calls. In this new architecture, the call-taker will be able to control the multimedia elements in the phone from a remote location. This would help the call-taker or first responder to have a better control over the situation. Transmission of the vital signs measured using the smart phone can be a life saver in critical situations. In today's voice oriented 9-1-1 calls, the dispatcher first collects critical information (e.g., location, call-back number) from caller, and assesses the situation. Meanwhile, the dispatchers constantly face a "60-second dilemma"; i.e., within 60 seconds, they need to make a complicated but important decision, whether to dispatch and, if so, what to dispatch. The dispatchers often feel that they lack sufficient information to make a confident dispatch decision. This remote-media-control described in this system will be able to facilitate information acquisition and decision-making in emergency situations within the 60-second response window in 9-1-1 calls using new multimedia technologies. digital.library.unt.edu/ark:/67531/metadc33139/
A Framework for Analyzing and Optimizing Regional Bio-Emergency Response Plans
The presence of naturally occurring and man-made public health threats necessitate the design and implementation of mitigation strategies, such that adequate response is provided in a timely manner. Since multiple variables, such as geographic properties, resource constraints, and government mandated time-frames must be accounted for, computational methods provide the necessary tools to develop contingency response plans while respecting underlying data and assumptions. A typical response scenario involves the placement of points of dispensing (PODs) in the affected geographic region to supply vaccines or medications to the general public. Computational tools aid in the analysis of such response plans, as well as in the strategic placement of PODs, such that feasible response scenarios can be developed. Due to the sensitivity of bio-emergency response plans, geographic information, such as POD locations, must be kept confidential. The generation of synthetic geographic regions allows for the development of emergency response plans on non-sensitive data, as well as for the study of the effects of single geographic parameters. Further, synthetic representations of geographic regions allow for results to be published and evaluated by the scientific community. This dissertation presents methodology for the analysis of bio-emergency response plans, methods for plan optimization, as well as methodology for the generation of synthetic geographic regions. digital.library.unt.edu/ark:/67531/metadc33200/
Elicitation of Protein-Protein Interactions from Biomedical Literature Using Association Rule Discovery
Extracting information from a stack of data is a tedious task and the scenario is no different in proteomics. Volumes of research papers are published about study of various proteins in several species, their interactions with other proteins and identification of protein(s) as possible biomarker in causing diseases. It is a challenging task for biologists to keep track of these developments manually by reading through the literatures. Several tools have been developed by computer linguists to assist identification, extraction and hypotheses generation of proteins and protein-protein interactions from biomedical publications and protein databases. However, they are confronted with the challenges of term variation, term ambiguity, access only to abstracts and inconsistencies in time-consuming manual curation of protein and protein-protein interaction repositories. This work attempts to attenuate the challenges by extracting protein-protein interactions in humans and elicit possible interactions using associative rule mining on full text, abstracts and captions from figures available from publicly available biomedical literature databases. Two such databases are used in our study: Directory of Open Access Journals (DOAJ) and PubMed Central (PMC). A corpus is built using articles based on search terms. A dataset of more than 38,000 protein-protein interactions from the Human Protein Reference Database (HPRD) is cross-referenced to validate discovered interactive pairs. A set of an optimal size of possible binary protein-protein interactions is generated to be made available for clinician or biological validation. A significant change in the number of new associations was found by altering the thresholds for support and confidence metrics. This study narrows down the limitations for biologists in keeping pace with discovery of protein-protein interactions via manually reading the literature and their needs to validate each and every possible interaction. digital.library.unt.edu/ark:/67531/metadc30508/
Socioscope: Human Relationship and Behavior Analysis in Mobile Social Networks
Access: Use of this item is restricted to the UNT Community.
The widely used mobile phone, as well as its related technologies had opened opportunities for a complete change on how people interact and build relationship across geographic and time considerations. The convenience of instant communication by mobile phones that broke the barrier of space and time is evidently the key motivational point on why such technologies so important in people's life and daily activities. Mobile phones have become the most popular communication tools. Mobile phone technology is apparently changing our relationship to each other in our work and lives. The impact of new technologies on people's lives in social spaces gives us the chance to rethink the possibilities of technologies in social interaction. Accordingly, mobile phones are basically changing social relations in ways that are intricate to measure with any precision. In this dissertation I propose a socioscope model for social network, relationship and human behavior analysis based on mobile phone call detail records. Because of the diversities and complexities of human social behavior, one technique cannot detect different features of human social behaviors. Therefore I use multiple probability and statistical methods for quantifying social groups, relationships and communication patterns, for predicting social tie strengths and for detecting human behavior changes and unusual consumption events. I propose a new reciprocity index to measure the level of reciprocity between users and their communication partners. The experimental results show that this approach is effective. Among other applications, this work is useful for homeland security, detection of unwanted calls (e.g., spam), telecommunication presence, and marketing. In my future work I plan to analyze and study the social network dynamics and evolution. digital.library.unt.edu/ark:/67531/metadc30533/
Rhythms of Interaction in Global Software Development Teams
Researchers have speculated that global software teams have activity patterns that are dictated by work-place schedules or a client's need. Similar patterns have been suggested for individuals enrolled in distant learning projects that require students to post feedback in response to questions or assignments. Researchers tend to accept the notion that students' temporal patterns adjust to academic or social calendars and are a result of choices made within these constraints. Although there is some evidence that culture do have an impact on communication activity behavior, there is not a clear how each of these factors may relate to work done in online groups. This particular study represents a new approach to studying student-group communication activities and also pursues an alternative approach by using activity data from students participating in a global software development project to generate a variety of complex measures that capture patterns about when students work. Students work habits are also often determined by where they live and what they are working on. Moreover, students tend to work on group projects in cycles, which correspond to a start, middle, and end time period. Knowledge obtained from this study should provide insight into current empirical research on global software development by defining the different time variables that can also be used to compare temporal patterns found in real-world teams. It should also inform studies about student team projects by helping instructors schedule group activities. digital.library.unt.edu/ark:/67531/metadc30476/
Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications
Environmental monitoring represents a major application domain for wireless sensor networks (WSN). However, despite significant advances in recent years, there are still many challenging issues to be addressed to exploit the full potential of the emerging WSN technology. In this dissertation, we introduce the design and implementation of low-power wireless sensor networks for long-term, autonomous, and near-real-time environmental monitoring applications. We have developed an out-of-box solution consisting of a suite of software, protocols and algorithms to provide reliable data collection with extremely low power consumption. Two wireless sensor networks based on the proposed solution have been deployed in remote field stations to monitor soil moisture along with other environmental parameters. As parts of the ever-growing environmental monitoring cyberinfrastructure, these networks have been integrated into the Texas Environmental Observatory system for long-term operation. Environmental measurement and network performance results are presented to demonstrate the capability, reliability and energy-efficiency of the network. digital.library.unt.edu/ark:/67531/metadc28493/
Survey of Approximation Algorithms for Set Cover Problem
In this thesis, I survey 11 approximation algorithms for unweighted set cover problem. I have also implemented the three algorithms and created a software library that stores the code I have written. The algorithms I survey are: 1. Johnson's standard greedy; 2. f-frequency greedy; 3. Goldsmidt, Hochbaum and Yu's modified greedy; 4. Halldorsson's local optimization; 5. Dur and Furer semi local optimization; 6. Asaf Levin's improvement to Dur and Furer; 7. Simple rounding; 8. Randomized rounding; 9. LP duality; 10. Primal-dual schema; and 11. Network flow technique. Most of the algorithms surveyed are refinements of standard greedy algorithm. digital.library.unt.edu/ark:/67531/metadc12118/
FIRST PREV 1 2 3 4 NEXT LAST