You limited your search to:

  Partner: UNT Libraries
 Department: Department of Chemistry
 Decade: 2010-2019
Microwave-Assisted Synthesis, Characterization, and Photophysical Properties of New Rhenium(I) Pyrazolyl-Triazine Complexes

Microwave-Assisted Synthesis, Characterization, and Photophysical Properties of New Rhenium(I) Pyrazolyl-Triazine Complexes

Date: May 2010
Creator: Salazar Garza, Gustavo Adolfo
Description: The reaction of the chelating ligand 4-[4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl]-N,N-diethyl-benzenamine, L, with pentacarbonylchlororhenium by conventional heating method produces the complexes fac-[ReL(CO)3Cl2] and fac-[Re2L(CO)6Cl2] in a period of 48 hours. The use of microwaves as the source of heat and the increase in the equivalents of one of the reactants leads to a more selective reaction and also decreases the reaction time to 1 hour. After proper purification, the photophysical properties of fac-[ReL(CO)3Cl] were analyzed. The solid-state photoluminescence analysis showed an emission band at 628 nm independent of temperature. However, in the solution studies, the emission band shifted from 550 nm in frozen media to 610 nm when the matrix became fluid. These results confirm that this complex possess a phenomenon known as rigidochromism.
Contributing Partner: UNT Libraries
Effect of fluorine and hydrogen radical species on modified oxidized Ni(Pt)Si

Effect of fluorine and hydrogen radical species on modified oxidized Ni(Pt)Si

Date: May 2010
Creator: Gaddam, Sneha Sen
Description: NiSi is an attractive material in the production of CMOS devices. The problem with the utilization of NiSi, is that there is no proper method of cleaning the oxide on the surface. Sputtering is the most common method used for the cleaning, but it has its own complications. Dry cleaning methods include the reactions with radicals and these processes are not well understood and are the focus of the project. Dissociated NF3 and NH3 were used as an alternative and XPS is the technique to analyze the reactions of atomic fluorine and nitrogen with the oxide on the surface. A thermal cracker was used to dissociate the NF3 and NH3 into NFx+F and NHx+H. There was a formation of a NiF2 layer on top of the oxide and there was no evidence of nitrogen on the surface indicating that the fluorine and hydrogen are the reacting species. XPS spectra, however, indicate that the substrate SiO2 layer is not removed by the dissociated NF3 and NiF2 growth process. The NiF2 over layer can be reduced to metallic Ni by reacting with dissociated NH3 at room temperature. The atomic hydrogen from dissociated ammonia reduces the NiF2 but it was determined that the ...
Contributing Partner: UNT Libraries
Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Date: May 2010
Creator: Pierpont, Aaron
Description: Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of the form LnM=E are studied, where Ln is the supporting ligand (dihydrophosphinoethane or β-diketiminate), E the activating ligand (O, NCH3, NCF3) at which C-H activation takes place, and M the late transition metal (Fe,Co,Ni,Cu). A hydrogen atom abstraction (HAA) / radical rebound (RR) mechanism is assumed for methane functionalization (CH4 à CH3EH). Since the best energetics are found for (β-diket)Ni=O and (β-diket)Cu=O catalysts, with or without CF3 substituents around the supporting ligand periphery, complete methane-to-methanol cycles were studied for such systems, for which N2O was used as oxygen atom transfer (OAT) reagent. Both monometallic and bimetallic OAT pathways are addressed. Monometallic Fe-N2 complexes of various supporting ligands (LnFe-N2) are studied at the beginning of the N2 activation chapter, where the effect of ligand on N2 activation in end-on vs. side-on N2 isomers ...
Contributing Partner: UNT Libraries
Sensitization of Lanthanides and Organic-Based Phosphorescence via Energy Transfer and Heavy-Atom Effects

Sensitization of Lanthanides and Organic-Based Phosphorescence via Energy Transfer and Heavy-Atom Effects

Date: May 2010
Creator: Arvapally, Ravi K.
Description: The major topics discussed are the phosphorescence sensitization in the lanthanides via energy transfer and in the organics by heavy atom effects. The f-f transitions in lanthanides are parity forbidden and have weak molar extinction coefficients. Upon complexation with the ligand, ttrpy (4'-p-Tolyl-[2,2':6',2"]-terpyridine) the absorption takes place through the ligand and the excitation is transferred to the lanthanides, which in turn emit. This process is known as "sensitized luminescence." Bright red emission from europium and bright green emission from terbium complexes were observed. There is ongoing work on the making of OLEDs with neutral complexes of lanthanide hexafluoroacetyl acetonate/ttrpy, studied in this dissertation. Attempts to observe analogous energy transfer from the inorganic donor complexes of Au(I) thiocyanates were unsuccessful due to poor overlap of the emissions of these systems with the absorptions of Eu(III) and Tb(III). Photophysics of silver-aromatic complexes deals with the enhancement of phosphorescence in the aromatics. The heavy atom effect of the silver is responsible for this enhancement in phosphorescence. Aromatics such as naphthalene, perylene, anthracene and pyrene were involved in this study. Stern Volmer plots were studied by performing the quenching studies. The quenchers employed were both heavy metals such as silver and thallium and lighter ...
Contributing Partner: UNT Libraries
Nanoparticles Engineered to Bind Serum Albumin: Microwave Assisted Synthesis, Characterization, and Functionalization of Fluorescently-Labeled, Acrylate-Based, Polymer Nanoparticles

Nanoparticles Engineered to Bind Serum Albumin: Microwave Assisted Synthesis, Characterization, and Functionalization of Fluorescently-Labeled, Acrylate-Based, Polymer Nanoparticles

Date: August 2010
Creator: Hinojosa, Barbara R.
Description: The potential use of polymeric, functionalized nanoparticles (NPs) as drug delivery vectors was explored. Covalent conjugation of albumin to the surface of NPs via maleimide chemistry proved problematic. However, microwave assisted synthesis of NPs was not only time efficient, but enabled the exploration of size control by changing the following parameters: temperature, microwave power, reaction time, initiator concentration, and percentage of monomer used. About 1.5 g of fluorescently-labeled, carboxylic acid-functionalized NPs (100 nm diameter) were synthesized for a total cost of less than $1. Future work will address further functionalization of the NPs for the coupling of albumin (or other targeted proteins), and tests for in vivo biodistribution.
Contributing Partner: UNT Libraries
Triimine Complexes of Divalent Group 10 Metals for Use in Molecular Electronic Devices

Triimine Complexes of Divalent Group 10 Metals for Use in Molecular Electronic Devices

Date: August 2010
Creator: Chen, Wei-Hsuan
Description: This research focused on the development of new metal triimine complexes of Pt(II), Pd(II), and Ni(II) for use in three types of molecular electronic devices: dye sensitized solar cells (DSSCs), organic light-emitting diodes (OLEDs), and organic field effect transistors (OFETs). Inorganic complexes combine many advantages of their chemical and photophysical properties and are processable on inexpensive and large area substrates for various optoelectronic applications. For DSSCs, a series of platinum (II) triimine complexes were synthesized and evaluated as dyes for nanocrystalline oxide semiconductors. Pt (II) forms four coordinate square planar complexes with various co-ligands and counterions and leads to spanning absorption across a wide range in the UV-Vis-NIR regions. When those compounds were applied to the oxide semiconductors, they led to photocurrent generation thus verifying the concept of their utility in solar cells. In the OLEDs project, a novel pyridyl-triazolate Pt(II) complex, Pt(ptp)2 was synthesized and generated breakthrough OLEDs. In the solution state, the electronic absorption and emission of the square planar structure results in metal-to-ligand charge transfer (MLCT) and an aggregation band. Tunable photoluminescence and electroluminescence colors from blue to red wavelengths have been attained upon using Pt(ptp)2 under different experimental conditions and OLED architectures. In taking advantage of ...
Contributing Partner: UNT Libraries
The Pure Rotational Spectra of Diatomics and Halogen-Addition Benzene Measured by Microwave and Radio Frequency Spectrometers

The Pure Rotational Spectra of Diatomics and Halogen-Addition Benzene Measured by Microwave and Radio Frequency Spectrometers

Date: August 2010
Creator: Etchison, Kerry C.
Description: Two aluminum spherical mirrors with radii of 203.2 mm and radii of curvature also of 203.2 mm have been used to construct a tunable Fabry-Perót type resonator operational at frequencies as low as 500 MHz. The resonator has been incorporated into a pulsed nozzle, Fourier transform, Balle-Flygare spectrometer. The spectrometer is of use in recording low J transitions of large asymmetric molecules where the spectra are often greatly simplified compared to higher frequency regions. The resonators use is illustrated by recording the rotational spectra of bromobenzene and iodobenzene. In related experiments, using similar equipment, the pure rotational spectra of four isotopomers of SrS and all three naturally occurring isotopomers of the actinide-containing compound thorium monoxide have been recorded between 6 and 26 GHz. The data have been thoroughly analyzed to produce information pertaining to bond lengths and electronic structures.
Contributing Partner: UNT Libraries
Podcast Effectiveness as Scaffolding Support for Students Enrolled in First-Semester General Chemistry Laboratories

Podcast Effectiveness as Scaffolding Support for Students Enrolled in First-Semester General Chemistry Laboratories

Date: August 2010
Creator: Powell, Mary Cynthia Barton
Description: Podcasts covering essential first-semester general chemistry laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones- or iPod touches-. Research focused in three areas: the extent of podcast usage, the numbers and types of interactions between instructors and research teams, and student performance on graded assignments. Data analysis indicates that the podcast treatment research teams accessed a podcast 2.86 times on average during each week that podcasts were available. Comparison of interaction data for the lecture treatment research teams and podcast treatment research teams reveals that interactions with instructors were statistically significantly fewer for teams that had podcast access rather than a pre‐laboratory lecture. The implication of the results is that student research teams were able to gather laboratory information more effectively when it was presented in an on-demand podcast format. Finally, statistical analysis of data on student performance on graded assignments indicates no significant differences between outcome measures for the treatment groups when compared as cohorts. The only statistically significant difference is between students judged to be highly motivated; for this sub‐group the students in the podcast treatment group earned a ...
Contributing Partner: UNT Libraries
Affordances of Instrumentation in General Chemistry Laboratories

Affordances of Instrumentation in General Chemistry Laboratories

Date: August 2010
Creator: Sherman, Kristin Mary Daniels
Description: The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO™ system as a useful and accurate measuring tool for general chemistry labs. They see the probeware as easy to use, portable, and able to interact with computers. Students find that the PASCO™ probeware system is useful in their general chemistry labs, more advanced chemistry labs, and in other science classes, and can be used in a variety of labs done in general chemistry. Students learn the affordances of the probeware through the lab manual, the laboratory teaching assistant, by trial and error, and from each other. The use of probeware systems provides lab instructors the opportunity to focus on the concepts illustrated by experiments and the opportunity to spend time discussing the results. In order to teach effectively, the instructor must know the correct name of the components involved, how to assemble and disassemble it correctly, how to troubleshoot the software, and must be able to replace broken or missing components ...
Contributing Partner: UNT Libraries
Synthesis and Screening of a Combinatorial Peptide Library for Ligands to Target Transferrin: Miniaturizing the Library

Synthesis and Screening of a Combinatorial Peptide Library for Ligands to Target Transferrin: Miniaturizing the Library

Date: August 2010
Creator: Brown, Jennifer Marie
Description: Combinatorial libraries are used in the search for ligands that bind to target proteins. Fmoc solid-phase peptide synthesis is routinely used to generate such libraries. Microwave-assisted peptide synthesis was employed here to decrease reaction times by 80-90%. Two One-Bead-One-Compound combinatorial libraries were synthesized on 130μm beads (one containing 750 members and the other 16, 807). The use of smaller solid supports would have many important practical advantages including; increased library diversity per unit mass, smaller quantities of library needed to generate hits, and screening could be conducted by using a standard flow cytometer. To this end, a miniaturized peptide library was synthesized on 20 μm beads to demonstrate proof of principle. A small sample from the 16,807-member library was screened against transferrin-AlexaFluro 647, a protein responsible for iron transport in vivo. A number of hits were identified and sequenced using techniques coupling nanomanipulation with nanoelectrospray mass spectrometry.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST