You limited your search to:

  Access Rights: Use restricted to UNT Community
  Partner: UNT Libraries
 Department: Department of Chemistry
Substituent Effects: A Computational Study on Stabilities of Cumulenes and Low Barrier Hydrogen Bonds

Substituent Effects: A Computational Study on Stabilities of Cumulenes and Low Barrier Hydrogen Bonds

Access: Use of this item is restricted to the UNT Community.
Date: August 2000
Creator: Kumar, Ganesh Angusamy
Description: The effect of substituents on the stabilities of cumulenes-ketenes, allenes, diazomethanes and isocyanates and related systems-alkynes, nitriles and nitrile oxides is studied using the density functional theory (B3LYP, SVWN and BP86) and ab initio (HF, MP2) calculations at the 6-31G* basis set level. Using isodesmic reactions, correlation between stabilization energies of cumulenes and substituent group electronegativities (c BE) is established and the results from DFT and MP2 methods are compared with the earlier HF calculations. Calculations revealed that the density functional methods can be used to study the effect of substituents on the stabilities of cumulenes. It is observed that the cumulenes are stabilized by electropositive substituent groups from s -electron donation and p -electron withdrawal and are destabilized by electronegative substituent groups from n-p donation. The calculated geometries of the cumulenes are compared with the available experimental data.High level ab initio and density functional theory calculations have been used to study the energetics of low-barrier hydrogen bond (LBHB) systems. Using substituted formic acid-formate anion complexes as model LBHB systems, hydrogen bond strength is correlated to the pKa mismatch between the hydrogen bond donor and the hydrogen bond acceptor. LBHB model systems are characterized by the 1H-NMR chemical shift calculations. ...
Contributing Partner: UNT Libraries
Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds

Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds

Access: Use of this item is restricted to the UNT Community.
Date: December 2000
Creator: Wang, Jiancheng
Description: Thermolysis of CoRu(CO)7(m -PPh2) (1) in refluxing 1,2-dichloroethane in the presence of the diphosphine ligands 2,3-bis(diphenylphosphino)maleic anhydride (bma) and 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the new mixed-metal complexes CoRu(CO)4(μ -P-P)(μ -PPh2) [where P-P = bma (3); bpcd (6)], along with trace amounts of the known complex CoRu(CO)6(PPh3)(μ -PPh2) (4). The requisite pentacarbonyl intermediates CoRu(CO)5(μ -P-P)(μ -PPh2) [where P-P = bma (2); bpcd (5)] have been prepared by separate routes and studied for their conversion to CoRu(CO)4(μ -P-P)(μ -PPh2). The complexes 2/3 and 5/6 have been isolated and fully characterized in solution by IR and NMR spectroscopy. The kinetics for the conversion of 2→3 and of 5→6 were measured by IR spectroscopy in chlorobenzene solvent. On the basis of the first-order rate constants, CO inhibition, and the activation parameters, a mechanism involving dissociative CO loss as the rate-limiting step is proposed. The solid-state structure of CoRu(CO)4(μ -bma)(μ -PPh2) (3) reveals that the two PPh2 groups are bound to the ruthenium center while the maleic anhydride π bond is coordinated to the cobalt atom. Thermolysis of the cluster Ru3(CO)12 with the bis(phosphine)hydrazine ligand (MeO)2PN(Me)N(Me)P(OMe)2 (dmpdmh) in toluene at 75°C furnishes the known clusters Ru4(CO)12[μ -N(Me)N(Me)] (9) and Ru3(CO)11[P(OMe)3] (10), in addition to the new ...
Contributing Partner: UNT Libraries
Layered Double Hydroxides and the Origins of Life on Earth

Layered Double Hydroxides and the Origins of Life on Earth

Access: Use of this item is restricted to the UNT Community.
Date: May 2001
Creator: Brister, Brian
Description: A brief introduction to the current state of research in the Origins of Life field is given in Part I of this work. Part II covers original research performed by the author and co-workers. Layered Double Hydroxide (LDH) systems are anion-exchanging clays that have the general formula M(II)xM(III)(OH)(2x+2)Y, where M(II) and M(III) are any divalent and trivalent metals, respectively. Y can be nearly any anion, although modern naturally occuring LDH systems incorporate carbonate (CO32-), chloride (Cl-), or sulfate (SO42-) anions. Intercalated cobalticyanide anion shows a small yet observable deviation from local Oh symmetry causing small differences between its oriented and non-oriented infrared spectra. Nitroprusside is shown to intercalate into 2:1 Mg:Al LDH with decomposition to form intercalated ferrocyanide and nitrosyl groups of an unidentified nature. The [Ru(CN)6]4- anion is shown to intercalate into layered double hydroxides in the same manner as other hexacyano anions, such as ferrocyanide and cobalticyanide, with its three-fold rotational axis perpendicular to the hydroxide sheets. The square-planar tetracyano-nickelate(II), -palladate(II), and platinate(II) anions were intercalated into both 2:1 and 3:1 Mg:Al layered double hydroxides (LDH). The basal spacings in the 2:1 hosts are approximately 11 Å, indicating that the anions are inclined approximately 75 degrees relative to ...
Contributing Partner: UNT Libraries
Mechanisms of Methoxide Ion Substitution and Acid- Catalyzed Z/E Isomerization of N-Methoxyimines

Mechanisms of Methoxide Ion Substitution and Acid- Catalyzed Z/E Isomerization of N-Methoxyimines

Access: Use of this item is restricted to the UNT Community.
Date: December 2001
Creator: Dolliver, Debra D.
Description: The second order rate constants for nucleophilic substitution by methoxide of (Z)- and (E)-O-methylbenzohydroximoyl fluorides [C6H4C(F)=NOCH3] with various substituents on the phenyl ring [p-OCH3 (1h, 2h), p-CH3 (1g, 2g), p-Cl (1f, 2f), p-H (1e, 2e), (3,5)-bis-CF3 (1i, 2i)] in 90:10 DMSO:MeOH have been measured. A Hammett plot of these rate constants vs σ values gave positive ρ values of 2.95 (Z isomer) and 3.29 (E isomer). Comparison of these rates with methoxide substitution rates for Omethylbenzohydroximoyl bromide [C6H4C(Br)=NOCH3] and Omethylbenzohydroximoyl chloride [C6H4C(Cl)=NOCH3] reveal an element effect for the Z isomers of Br:Cl:F(1e) = 2.21:1.00:79.7 and for the E isomers of Cl:F(2e) = 1.00:18.3. With the p-OCH3-imidoyl halides the following element effects are found: Br:Cl:F(1h) = 2.78:1.00:73.1 for the Z isomer and Br:Cl:F(2h) = 1.97:1.00:12.1 for the E isomer. Measurement of activation parameters revealed ∆S≠ = -17 eu for 1e and ∆S≠ = -9.9 eu for 2e. Ab initio calculations (HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6- 31+G*//HF/6-31+G*, HF-SCIPCM/6-31+G*//HF/6-31+G*) were performed to define the reaction surface. These calculations demonstrate a relatively large barrier for nucleophilic attack in relation to halogen loss and support the experimental findings that this reaction proceeds by an addition-elimination mechanism (AN# + DN). The imidoyl fluorides have been used to synthesize ...
Contributing Partner: UNT Libraries
Layered Double Hydroxides: Morphology, Interlayer Anion, and the Origins of Life

Layered Double Hydroxides: Morphology, Interlayer Anion, and the Origins of Life

Access: Use of this item is restricted to the UNT Community.
Date: December 2002
Creator: Halcom-Yarberry, Faith Marie
Description: The preparation of layered double hydroxides via co-precipitation of a divalent/trivalent metal solution against a base results in 1 mm LDH particles with a disorganized metal lattice. Research was performed to address these morphological issues using techniques such as Ostwald ripening and precipitation via aluminate. Another interesting issue in layered double hydroxide materials is the uptake and orientation of anions into the interlayer. Questions about iron cyanide interlayer anions have been posed. Fourier transform infared spectroscopy and powder x-ray diffraction have been used to investigate these topics. It was found that factors such as orientation, anion charge, and anion structure depended on the divalent/trivalent metal ratio of the hydroxide layer and reactivity time. The cyanide self-addition reaction is an important reaction of classical prebiotic chemistry. This reaction has been shown to give rise to amino acids, purines and pyrimidines. At cyanide concentrations similar to that expected on the early earth, hydrolysis to formamide rather than self-addition occurs. One theory to alleviate this side reaction is the use of minerals or clays that are thought to concentrate and catalyze prebiotics of interest. Layered double hydroxides have been studied as a catalyst for this reaction.
Contributing Partner: UNT Libraries
Investigations of Thermochemistry and the Kinetics of H Atom Radical Reactions

Investigations of Thermochemistry and the Kinetics of H Atom Radical Reactions

Access: Use of this item is restricted to the UNT Community.
Date: December 2002
Creator: Peebles, Lynda Renee
Description: The thermochemistry of several species, and the kinetics of various H atom radical reactions relevant to atmospheric and combustion chemistry were investigated using ab initio theoretical techniques and the flash photolysis / resonance fluorescence technique. Using ab initio quantum mechanical calculations up to the G3 level of theory, the C-H bond strengths of several alkanes were calculated. The bond strengths were calculated using two working reactions. From the results, it is apparent that the bond strengths decrease as methyl groups are added to the central carbon. The results are in good agreement with recent experimental halogenation kinetic studies. Hydrogen bond strengths with sulfur and oxygen were studied via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results for the bond dissociation energies (ground state at 0 K, units: kJ mol-1) are: S-H = 349.9, S-D = 354.7, HS-H = 376.2, DS-D = 383.4, and HO-H = 492.6. These data compare well with experimental literature. The rate constants for the isotopic reactions of H + H2S, D + H2S, H + D2S, and D + D2S are studied at the QCISD(T)/6-311+G(3df,2p) level of theory. The contributions of the exchange reaction versus abstraction are examined through transition state ...
Contributing Partner: UNT Libraries
Synthesis and X-ray Diffraction Structure of 8,9-Dichloropyrrolo[1,2-a]perimidin-10-one

Synthesis and X-ray Diffraction Structure of 8,9-Dichloropyrrolo[1,2-a]perimidin-10-one

Access: Use of this item is restricted to the UNT Community.
Date: August 2003
Creator: Chen, Tao
Description: Treatment of dichloromaleic anhydride and 1,8-diaminonaphthalene in either benzene or toluene under refluxing conditions gives low yields of the new heterocyclic compound 8,9-dichloropyrrolo[1,2-a]perimidin-10-one. This product has been isolated and characterized in solution by NMR, IR, and UV/vis spectroscopies, and the solid-state structure of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been established by X-ray crystallography. The nature of the HOMO and LUMO levels of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been studied by extended Hückel molecular orbital calculations.
Contributing Partner: UNT Libraries
Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione

Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Akinola, Adeniyi O.
Description: Baeyer-Villiger oxidation of 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (1,9-dibromo-PCU-8,11-dione) was performed by using an excess amount of m-chloroperbenzoic acid (3 equivalents) and resulted in the formation of the corresponding monolactone. The reaction would not proceed to the dilactone stage. The structure of the reaction product was established unequivocally via single crystal X-ray diffraction. Baeyer-Villiger oxidation of 1,9-dibromo-PCU-8,11-dione using ceric ammonium nitrate (CAN) was also performed and afforded a mixture of lactones. Only one of these lactones, which also contained an alkene functionality, could be isolated and characterized. 1,7-dibromo-PCU-8,11-dione was also reacted with CAN, yielding the mono-lactone, which has also been characterized.
Contributing Partner: UNT Libraries
Preparation and characterization of praseodymium oxide films and powders.

Preparation and characterization of praseodymium oxide films and powders.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Shang, Yajuan
Description: Nanocrystalline praseodymium oxide films have been successfully generated on stainless steel substrates. The electrochemical deposition was performed in the cathode compartment of a divided electrochemical cell with a regular three-electrode configuration. The green films obtained by electrodeposition were then annealed at high temperatures for 1-3 hours. X-ray diffraction revealed the fluorite structure of Pr6O11 and the crystallite size was calculated. X-ray photoelectron spectroscopy was employed to study the composition of the oxide films and also the oxidation state of Pr. Scanning electron microscopy was utilized to study the surface texture and microstructure of deposits. Fourier transform infrared spectrometery was used to investigate the composition of the films. The effects of different conditions on the green films were also studied such as different pH values of the electrolyte solution, different deposition modes, different supporting electrolytes and different applied current densities. Sintering experiments were conducted to investigate the properties of the green films. Praseodymium oxide powders were also successfully prepared by combining electrochemical methods with sintering processes. The praseodymium oxide powders were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The crystallite sizes of the powders were evaluated.
Contributing Partner: UNT Libraries
De novo prediction of the ground state structure of transition metal complexes.

De novo prediction of the ground state structure of transition metal complexes.

Access: Use of this item is restricted to the UNT Community.
Date: December 2004
Creator: Buda, Corneliu
Description: One of the main goals of computational methods is to identify reasonable geometries for target materials. Organometallic complexes have been investigated in this dissertation research, entailing a significant challenge based on transition metal diversity and the associated complexity of the ligands. A large variety of theoretical methods have been employed to determine ground state geometries of organometallic species. An impressive number of transition metals entailing diverse isomers (e.g., geometric, spin, structural and coordination), different coordination numbers, oxidation states and various numbers of electrons in d orbitals have been studied. Moreover, ligands that are single, double or triple bonded to the transition metal, exhibiting diverse electronic and steric effects, have been investigated. In this research, a novel de novo scheme for structural prediction of transition metal complexes was developed, tested and shown to be successful.
Contributing Partner: UNT Libraries
An NMR Study of Trimethylsilylmethyllithium Aggregates and Mixed Trimethylsilylmethyllithium/Lithium trimethylsilylmethoxide Aggregates

An NMR Study of Trimethylsilylmethyllithium Aggregates and Mixed Trimethylsilylmethyllithium/Lithium trimethylsilylmethoxide Aggregates

Access: Use of this item is restricted to the UNT Community.
Date: December 2004
Creator: Medley, Marilyn S.
Description: An NMR spectroscopy study of trimethylsilylmethyllilthium, TMSM-Li, indicates that TMSM-Li exists as two different aggregates in cyclopentane solution. Using previously reported colligative properties of TMSM-Li in different solutions in connection with new 13C and 6Li NMR data collected in this study, aggregation states were assigned as octamer and hexamer. Low temperature 13C and 6Li NMR peak intensities indicated an equilibrium exists between the two aggregates that shifts toward the octamer as the temperature decreases. ΔH was calculated to be 5.23 + 0.15 kcal/mol and ΔS was calculated to be 17.9 + 0.6 eu for the hexamer/octamer equilibrium system. Samples of TMSM-Li were mixed with TMSM-OH in attempts to form mixed alkyllithium/lithium alkoxide aggregates. 13C NMR data for these mixtures gave inconclusive results whether or not these compounds formed, which is different from other primary alkyllithium compounds studied in the past. A study of neopentyllithium, NpLi, indicates only one aggregate in solution with the aggregation state unknown using low temperature 13C NMR spectroscopy.
Contributing Partner: UNT Libraries
An NMR Study of 2-Ethylbutyllithium/Lithium 2-Ethyl-1-butoxide Mixed Aggregates, Lithium Hydride/Lithium 2-Ethyl-1-butoxide Mixed Aggregates, n-Pentyllithium Aggregates, and n-Pentyllithium/Lithium n-Pentoxide Mixed Aggregates

An NMR Study of 2-Ethylbutyllithium/Lithium 2-Ethyl-1-butoxide Mixed Aggregates, Lithium Hydride/Lithium 2-Ethyl-1-butoxide Mixed Aggregates, n-Pentyllithium Aggregates, and n-Pentyllithium/Lithium n-Pentoxide Mixed Aggregates

Access: Use of this item is restricted to the UNT Community.
Date: December 2005
Creator: Sellers, Nicole
Description: A 13C and 6Li variable temperature NMR study of 2-ethylbutyllithium/lithium 2-ethyl-1-butoxide mixed aggregates formed from reacting 2-ethyl-1-butanol with 2-ethylbutyllithium in two O/Li ratios of 0.2/1 and 0.8/1. The 0.2/1 sample resulted in two 2-ethylbutyllithium/lithium 2-ethyl-1-butoxide mixed aggregates and seven lithium hydride/lithium 2-ethyl-1-butoxide mixed aggregates. The lithium hydride mixed aggregates were also studied using selective 1H decoupling experiments. The 0.8/1 sample resulted in six 2-ethylbutyllithium/lithium 2-ethyl-1-butoxide mixed aggregates and five lithium hydride/lithium 2-ethyl-1-butoxide mixed aggregates. A low temperature 13C NMR spectroscopy study of n-pentyllithium indicated three aggregates, most likely a hexamer, an octamer, and a nonamer. A low temperature 13C NMR study of an 0.2/1 O/Li ratio sample of n-pentyllithium mixed with 1-pentanol resulted in three n-pentyllithium/lithium n-pentoxide aggregates mixed aggregates along with the three n-pentyllithium aggregates. 13C NMR data for this mixture gave inconclusive results whether or not lithium hydride/lithium alkoxide mixed aggregates were present in the sample.
Contributing Partner: UNT Libraries
Studies of spin alignment in ferrocenylsilane compounds and in regiospecific oxidation reactions of 1,9-dimethylpentacyclo [5.4.0.02,6.03,10.05,9]undecane-8,11-dione.

Studies of spin alignment in ferrocenylsilane compounds and in regiospecific oxidation reactions of 1,9-dimethylpentacyclo [5.4.0.02,6.03,10.05,9]undecane-8,11-dione.

Access: Use of this item is restricted to the UNT Community.
Date: August 2006
Creator: Atim, Silvia
Description: Part I. The syntheses of a series of stable ferrocenylsilane compounds and their corresponding polyradical cations are reported. Electron spin properties of these molecules were investigated by cyclic voltammetry, ESR, and magnetic susceptibility measurements. All the compounds presented, showed significant electronic communication (>100 mV) between the redox centers by CV. Part II. Baeyer-Villiger oxidation of (1,9-dimethyl-PCU-8,11-dione) was performed using m-chloroperoxybenzoic acid in 1:2 molar ratios. The product obtained was the corresponding dilactone 113. The structure of the reaction products was established unequivocally via single crystal X-ray diffraction methods. The reaction of the 1,9-dimethyl-PCU-8,11-dione with 1:1 molar ratio of m-chloroperoxybenzoic acid produced again the dilactone 113, and not the expected monolactone 114. Ceric ammonium nitrate (CAN) promoted oxidation reaction of 1,9-dimethyl-PCU-8,11-dione afforded a mixture of dimethylated lactones, which indicated unique reaction mechanism pathways. These individual isomers, 115 and 116, have been isolated from these mixtures via column chromatography by using silica gel as adsorbent followed by fractional recrystallization of individual chromatography fractions. Structures of these pure products have been established unequivocally by application of single crystal X-ray crystallographic methods.
Contributing Partner: UNT Libraries
Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products

Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Kandala, Srikanth
Description: The tetraruthenium cluster H4Ru4(CO)12 has been studied for its reactivity with the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2, 4,5-bis (diphenylphosphino)-4-cyclopenten-1,3-dione, bis(diphenyphosphino)benzene and 1,8- bis(diphenyl phosphino)naphthalene under thermal, near-UV photolysis, and Me3NO-assisted activation. All three cluster activation methods promote loss of CO and furnish the anticipated substitution products that possess a chelating diphosphine ligand. Clusters 1, 2, 3 and 4 have been characterized in solution by IR and NMR spectroscopies, and these data are discussed with respect to the crystallographically determined structures for all new cluster compounds. The 31P NMR spectral data and the solid-state structures confirm the presence of a chelating diphosphine ligand in all four new clusters. Sealed NMR tubes containing clusters 1, 2, 3 and 4 were found to be exceeding stable towards near-UV light and temperatures up to ca. 100°C. The surprisingly robust behavior of the new clusters is contrasted with the related cluster Ru3(CO)10(bpcd) that undergoes fragmentation to the donor-acceptor compound Ru2(CO)6(bpcd) and the phosphido-bridged compound Ru2(CO)6 (µ-PPh2)[µ-C=C(PPh2)C(O)CH2C(O)] under mild conditions. The electrochemical properties have been investigated in the case of clusters 1 and 2 by cyclic voltammetry, and the findings are discussed with respect to the reported electrochemical data on the parent cluster H4Ru4(CO)12.
Contributing Partner: UNT Libraries
Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Access: Use of this item is restricted to the UNT Community.
Date: May 2003
Creator: Arunagiri, Tiruchirapalli Natarajan
Description: An extremely facile and novel method called spontaneous deposition, to deposit noble metal nanoparticles on a most stable form of carbon (C) i.e. diamond is presented. Nanometer sized particles of such metals as platinum (Pt), palladium (Pd), gold (Au), copper (Cu) and silver (Ag) could be deposited on boron-doped (B-doped) polycrystalline diamond films grown on silicon (Si) substrates, by simply immersing the diamond/Si sample in hydrofluoric acid (HF) solution containing ions of the corresponding metal. The electrons for the reduction of metal ions came from the Si back substrate. The diamond/Si interfacial ohmic contact was of paramount importance to the observation of the spontaneous deposition process. The metal/diamond (M/C) surfaces were investigated using Raman spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffractometry (XRD). The morphology (i.e. size and distribution) of metal nanoparticles deposits could be controlled by adjusting the metal ion concentration, HF concentration and deposition time. XRD data indicate the presence of textured and strained crystal lattices of Pd for different Pd/C morphologies, which seem to influence the electrocatalytic oxidation of formaldehyde (HCHO). The sensitivity of electrocatalytic reactions to surface crystal structure implies that M/C could be fabricated for specific electrocatalytic applications. The research also ...
Contributing Partner: UNT Libraries
Synthesis and Properties of Novel Cage-Annulated Crown Ethers

Synthesis and Properties of Novel Cage-Annulated Crown Ethers

Access: Use of this item is restricted to the UNT Community.
Date: May 2003
Creator: Huang, Zilin
Description: Three cage-functionalized polyoxacrown ethers (9, 10 and 12) and four novel cage-functionalized polyoxamonoazacrown ethers (18, 20, 25 and 29) that contain 3,5-disubstituted-4-oxahexacyclo[5.4.0.02,6.03,10.05,9.08,11]dodecane ("oxahexacyclic") moiety have been synthesized and their respective alkali metal picrate extraction profiles along with that of three analogues 13, 14 and 21 have been obtained. The observed avidities and selectivities of the host molecules toward complexation and transport of alkali metal picrates can be related to the size and shape of their respective macrocyclic cavity and the number of donor atoms. The effect of N-alkyl substitution on the complexation properties of azacrown ethers has been studied. The avidity of N-Et azacrown ethers toward complexation with alkali metal cations is generally higher than that of the corresponding non-N-alkylated hosts. However, the presence of an N-Et group appears to have a negligible effect upon their relative selectivities in their regards. The effect of pH on extraction process was studied; it was thereby determined that the alkali metal picrate extraction experiments are best performed at high pH (ca. 11-12).
Contributing Partner: UNT Libraries
Effects of Web-based Instruction in High School Chemistry.

Effects of Web-based Instruction in High School Chemistry.

Access: Use of this item is restricted to the UNT Community.
Date: May 2003
Creator: Stratton, Eric W.
Description: The intent of this study is to identify correlations that might exist between Web-based instruction and higher assessment scores in secondary education. The study framework was held within the confines of a public high school chemistry classroom. Within this population there were students identified as gifted and talented (GT) as well as those without this designation. These two classifications were examined for statistically higher assessment scores using a two-tailed t-test. Results indicated that females outperformed males on pre- and post- instructional unit tests. All subgroups improved their logical-thinking skills and exhibited positive attitudes towards Web-based instruction. In general, Web-based instruction proved beneficial to improving classroom performance of all GT and non-GT groups as compared to traditional classroom instruction.
Contributing Partner: UNT Libraries
Passivation effects of surface iodine layer on tantalum for the electroless copper deposition.

Passivation effects of surface iodine layer on tantalum for the electroless copper deposition.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Liu, Jian
Description: The ability to passivate metallic surfaces under non-UHV conditions is not only of fundamental interests, but also of growing practical importance in catalysis and microelectronics. In this work, the passivation effect of a surface iodine layer on air-exposed Ta for the copper electroless deposition was investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Although the passivation effect was seriously weakened by the prolonged air exposure, iodine passivates the Ta substrate under brief air exposure conditions so that enhanced copper wetting and adhesion are observed on I-passivated Ta relative to the untreated surface.
Contributing Partner: UNT Libraries
Electrodeposition of adherent copper film on unmodified tungsten.

Electrodeposition of adherent copper film on unmodified tungsten.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Wang, Chen
Description: Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V vs Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which stick the scotch tape on the sample, then peel off the tape and see if the copper film peels off or not. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicate that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics do not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small ...
Contributing Partner: UNT Libraries
Modeling wild type and mutant glutathione synthetase.

Modeling wild type and mutant glutathione synthetase.

Access: Use of this item is restricted to the UNT Community.
Date: August 2004
Creator: Dinescu, Adriana
Description: Glutathione syntethase (GS) is an enzyme that belongs to the ATP-grasp superfamily and catalyzes the second step in the biosynthesis of glutathione. GS has been purified and sequenced from a variety of biological sources; still, its exact mechanism is not fully understood. Four highly conserved residues were identified in the binding site of human GS. Additionally, the G-loop residues that close the active site during catalysis were found to be conserved. Since these residues are important for catalysis, their function was studied computationally by site-directed mutagenesis. Starting from the reported crystal structure of human GS, different conformations for the wild type and mutants were obtained using molecular dynamics technique. The key interactions between residues and ligands were detected and found to be essential for enzyme activity.
Contributing Partner: UNT Libraries
Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Access: Use of this item is restricted to the UNT Community.
Date: August 2005
Creator: Lei, Jipu
Description: An iodine surface layer has been prepared on Ru(poly) and Ru(0001) electrodes by exposure to iodine vapor in UHV and polarizing in a 0.1 M HClO4/0.005 M KI solution, respectively. A saturation coverage of I on a Ru(poly) electrode passivates the Ru surface against significant hydroxide, chemisorbed oxygen or oxide formation during exposure to water vapor over an electrochemical cell in a UHV-electrochemistry transfer system. Immersion of I-Ru(poly) results in greater hydroxide and chemisorbed oxygen formation than water vapor exposure, but an inhibition of surface oxide formation relative that of the unmodified Ru(poly) surface is still observed. Studies with combined electrochemical and XPS techniques show that the iodine surface adlayer remained on top of the surface after cycles of overpotential electrodeposition/dissolution of copper on both Ru(poly) and Ru(0001) electrodes. These results indicate the potential bifunctionality of iodine layer to both passivate the Ru surface in the microelectronic processing and to act as a surfactant for copper electrodeposition. The electrodeposition of Cu on Ru(0001) or polycrystalline Ru was studied using XPS with combined ultrahigh vacuum/electrochemistry methodology (UHV-EC) in 0.1 M HClO4 with Cu(ClO4)2 concentrations ranging from 0.005 M to 0.0005 M, and on polycrystalline Ru in a 0.05M H2SO4/0.005 M CuSO4/0.001 ...
Contributing Partner: UNT Libraries
The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research

The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research

Access: Use of this item is restricted to the UNT Community.
Date: August 2005
Creator: Wang, Chen
Description: Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V versus Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which involves sticking the scotch tape on the sample, then peeling off the tape and observing if the copper film peels off or not. Characterization by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicated that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics does not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small ...
Contributing Partner: UNT Libraries
Synthesis and Complexation Studies of Novel Functionalized Crown Ethers and Azacrown Ethers

Synthesis and Complexation Studies of Novel Functionalized Crown Ethers and Azacrown Ethers

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Huang, Zilin
Description: Novel cage-functionalized azacrown ethers, i.e. 51, 52, 53, 55, 57, 61 and 62, which have various crown cavity and different number of nitrogen atoms incorporated, have been prepared. X-ray structures of 53, 55 and 57 have been obtained for the study of the crown topological structure. The complexation properties of crown 51, 52, 57, 61 and 62 have been evaluated via alkali metal picrate extraction, silver picrate extraction and ESI-MS study. The novel cage-fuctionalized azacrown ethers generally exhibit high avidity and selectivity towards Ag+ versus alkali metal ions and some transition metals i.e. Cu2+, Mn2+, Zn2+, Ni2+ and Pb2+. Crown 61 displays significant avidity and selectivity toward K+ in alkali metal picrate extraction experiments vis-à-vis the remaining alkali metal picrates. Three types of ditopic ion-exchange receptors for sodium hydroxide extraction study have been designed. All of the crown ether molecules have proper cavity for selective sodium complexation and have weakly acidic ionizable alcohols for sodium-proton exchange under strongly basic conditions. Crown 80 and 81 were synthesized; key intermediates for the synthesis of crown 82, 83 and 84 have been prepared. The preparation of 99 afforded an unexpected crown 103. The preparation of 109 had been attempted, but could not be ...
Contributing Partner: UNT Libraries
Interfacial Studies of Bimetallic Corrosion in Copper/Ruthenium Systems and Silicon Surface Modification with Organic and Organometallic Chemistry

Interfacial Studies of Bimetallic Corrosion in Copper/Ruthenium Systems and Silicon Surface Modification with Organic and Organometallic Chemistry

Access: Use of this item is restricted to the UNT Community.
Date: August 2006
Creator: Nalla, Praveen Reddy
Description: To form Cu interconnects, dual-damascene techniques like chemical mechanical planarization (CMP) and post-CMP became inevitable for removing the "overburden" Cu and for planarizing the wafer surface. During the CMP processing, Cu interconnects and barrier metal layers experience different electrochemical interactions depending on the slurry composition, pH, and ohmic contact with adjacent metal layers that would set corrosion process. Ruthenium as a replacement of existing diffusion barrier layer will require extensive investigation to eliminate or control the corrosion process during CMP and post CMP. Bimetallic corrosion process was investigated in the ammonium citrate (a complexing agent of Cu in CMP solutions) using micro test patterns and potentiodynamic measurements. The enhanced bimetallic corrosion of copper observed is due to noble behavior of the ruthenium metal. Cu formed Cu(II)-amine and Cu(II)-citrate complexes in alkaline and acidic solutions and a corrosion mechanism has been proposed. The currently used metallization process (PVD, CVD and ALD) require ultra-high vacuum and are expensive. A novel method of Si surface metallization process is discussed that can be achieved at room temperature and does not require ultra-high vacuum. Ruthenation of Si surface through strong Si-Ru covalent bond formation is demonstrated using different ruthenium carbonyl compounds. RBS analysis accounted for ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST