You limited your search to:

  Partner: UNT Libraries
 Department: Department of Physics
 Decade: 2010-2019
EEG, Alpha Waves and Coherence

EEG, Alpha Waves and Coherence

Date: May 2010
Creator: Ascolani, Gianluca
Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable ...
Contributing Partner: UNT Libraries
Fractional Calculus and Dynamic Approach to Complexity

Fractional Calculus and Dynamic Approach to Complexity

Date: December 2015
Creator: Beig, Mirza Tanweer Ahmad
Description: Fractional calculus enables the possibility of using real number powers or complex number powers of the differentiation operator. The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation for a fractional trajectory, that being an average over an ensemble of stochastic trajectories. With an ensemble average perspective, the explanation of the behavior of fractional chaotic systems changes dramatically. Before now what has been interpreted as intrinsic friction is actually a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. Nonlinear Langevin equation describes the mean field of a finite size complex network at criticality. Critical phenomena and temporal complexity are two very important issues of modern nonlinear dynamics and the link between them found by the author can significantly improve the understanding behavior of dynamical systems at criticality. The subject of temporal complexity addresses the challenging and especially helpful in addressing fundamental physical science issues beyond the limits of reductionism.
Contributing Partner: UNT Libraries
Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Date: December 2012
Creator: Chi, Chenglin
Description: Poly ethylene glycol (PEG) based microgels were synthesized and investigated. The PEG microgel has the same phase transition as the traditional poly N-isopropylacrylamide (PNIPAM). As a good substitute of PNIPAM, PEG microgel exhibits many advantages: it is easier to control the lower critical solution temperature (LCST) of the microgel by changing the component of copolymers; it has a more solid spherical core-shell structure to have a double thermo sensitivity; it is straightforward to add other sensitivities such as pH, magnetic field or organic functional groups; it readily forms a photonic crystal structure exhibiting Bragg diffraction; and, most importantly, the PEG microgel is biocompatible with human body and has been approved by FDA while PNIPAM has not. PEG microgels with core-shell structure are synthesized with a two-step free radical polymerization and characterized with DLS, SLS and UV–Vis. The dynamic mechanics of melting and recrystallizing of the PEG core-shell microgel are presented and discussed. Photonic crystals of PEG microgels were synthesized and characterized. The crystal can be isolated in a thin film or a bulk column. The phase transition of PEG microgel was simulated with the mean field theory. The enthalpy and entropy of phase transition can be estimated from the best ...
Contributing Partner: UNT Libraries
Studies of Charged Particle Dynamics for Antihydrogen Synthesis

Studies of Charged Particle Dynamics for Antihydrogen Synthesis

Date: December 2014
Creator: Correa, Jose Ricardo
Description: Synthesis and capture of antihydrogen in controlled laboratory conditions will enable precise studies of neutral antimatter. The work presented deals with some of the physics pertinent to manipulating charged antiparticles in order to create neutral antimatter, and may be applicable to other scenarios of plasma confinement and charged particle interaction. The topics covered include the electrostatic confinement of a reflecting ion beam and the transverse confinement of an ion beam in a purely electrostatic configuration; the charge sign effect on the Coulomb logarithm for a two component (e.g., antihydrogen) plasma in a Penning trap as well as the collisional scattering for binary Coulomb interactions that are cut off at a distance different than the Debye length; and the formation of magnetobound positronium and protonium.
Contributing Partner: UNT Libraries
High Efficiency High Power Blue Laser by Resonant Doubling in PPKTP

High Efficiency High Power Blue Laser by Resonant Doubling in PPKTP

Date: August 2011
Creator: Danekar, Koustubh
Description: I developed a high power blue laser for use in scientific and technical applications (eg. precision spectroscopy, semiconductor inspection, flow cytometry, etc). It is linearly polarized, single longitudinal and single transverse mode, and a convenient fiber coupled continuous wave (cw) laser source. My technique employs external cavity frequency doubling and provides better power and beam quality than commercially available blue diode lasers. I use a fiber Bragg grating (FBG) stabilized infrared (IR) semiconductor laser source with a polarization maintaining (PM) fiber coupled output. Using a custom made optical and mechanical design this output is coupled with a mode matching efficiency of 96% into the doubling cavity. With this carefully designed and optimized cavity, measurements were carried out at various fundamental input powers. A net efficie ncy of 81 % with an output power of 680 mW at 486 nm was obtained using 840 mW of IR input. Also I report an 87.5 % net efficiency in coupling of blue light from servo locked cavity into a single mode PM fiber. Thus I have demonstrated a total fiber to fiber efficiency of 71% can be achieved in our approach using periodically poled potassium titanyl phosphate (PPKTP). To obtain these results, all ...
Contributing Partner: UNT Libraries
Effects of Quantum Coherence and Interference

Effects of Quantum Coherence and Interference

Access: Use of this item is restricted to the UNT Community.
Date: August 2013
Creator: Davuluri, Subrahmanya Bhima Sankar
Description: Quantum coherence and interference (QCI) is a phenomenon that takes place in all multi-level atomic systems interacting with multiple lasers. In this work QCI is used to create several interesting effects like lasing without inversion (LWI), controlling group velocity of light to extreme values, controlling the direction of propagation through non-linear phase matching condition and for controlling the correlations in field fluctuations. Controlling group velocity of light is very interesting because of many novel applications it can offer. One of the unsolved problems in this area is to achieve a slow and fast light which can be tuned continuously as a function of frequency. We describe a method for creation of tunable slow and fast light by controlling intensity of incident laser fields using QCI effects. Lasers are not new to the modern world but an extreme ultra-violet laser or a x-ray laser is definitely one of the most desirable technologies today. Using QCI, we describe a method to realize lasing at high frequencies by creating lasing without inversion. Role of QCI in creating correlations and anti-correlations, which are generated by vacuum fluctuations, in a three level lambda system coupled to two strong fields is discussed.
Contributing Partner: UNT Libraries
Sputtering of Bi and Preferential Sputtering of an Inhomogeneous Alloy

Sputtering of Bi and Preferential Sputtering of an Inhomogeneous Alloy

Date: December 2014
Creator: Deoli, Naresh T.
Description: Angular distributions and total yields of atoms sputtered from bismuth targets by normally incident 10 keV -50 keV Ne+ and Ar+ ions have been measured both experimentally and by computer simulation. Polycrystalline Bi targets were used for experimental measurements. The sputtered atoms were collected on high purity aluminum foils under ultra-high vacuum conditions, and were subsequently analyzed using Rutherford backscattering spectroscopy. The Monte-Carlo based SRIM code was employed to simulate angular distributions of sputtered Bi atoms and total sputtering yields of Bi to compare with experiment. The measured sputtering yields were found to increase with increasing projectile energy for normally incident 10 keV - 50 keV Ne+ and Ar+ ions. The shapes of the angular distributions of sputtered Bi atoms demonstrated good agreement between experiment and simulation in the present study. The measured and simulated angular distributions of sputtered Bi exhibited an over-cosine tendency. The measured value of the degree of this over-cosine nature was observed to increase with increasing incident Ne+ ion energy, but was not strongly dependent on incident Ar+ ion energy. The differential angular sputtering yield and partial sputtering yields due to Ar ion bombardment of an inhomogeneous liquid Bi:Ga alloy have been investigated, both experimentally and ...
Contributing Partner: UNT Libraries
Nonlinear and Quantum Optics Near Nanoparticles

Nonlinear and Quantum Optics Near Nanoparticles

Date: December 2015
Creator: Dhayal, Suman
Description: We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. ...
Contributing Partner: UNT Libraries
Synthesis and Characterization of Ion Beam Assisted Silver Nanosystems in Silicon Based Materials for Enhanced Photocurrent Collection Efficiency

Synthesis and Characterization of Ion Beam Assisted Silver Nanosystems in Silicon Based Materials for Enhanced Photocurrent Collection Efficiency

Date: May 2015
Creator: Dhoubhadel, Mangal S.
Description: In recent years a great deal of interest has been focused on the synthesis of transitional metal (e.g. Ag, Cu, Fe, Au) nanosystems at the surface to sub-surface regions of Si and SiO2 matrices for fundamental understanding of their structures as well as for development of technological applications with enhanced electronic and optical properties. The applications of the metal nanoparticle or nanocluster (NC) systems range from plasmonics, photovoltaic devices, medical, and biosensors. In all of these applications; the size, shape and distribution of the metallic NCs in the silicon matrix play a key role. Low energy ion implantation followed by thermal annealing (in vacuum or gas environment) is one of the most suitable methods for synthesis of NCs at near surfaces to buried layers below the surfaces of the substrates. This technique can provide control over depth and concentration of the implanted ions in the host matrix. The implanted low energy metal ions initially amorphizes the Si substrates while being distributed at a shallow depth near the substrate surface. When subject to thermal annealing, the implanted ions agglomerate to form clusters of different sizes at different depths depending upon the fluence. However, for the heavier ions implanted with high fluences ...
Contributing Partner: UNT Libraries
Novel Semi-Conductor Material Systems: Molecular Beam Epitaxial Growth and Characterization

Novel Semi-Conductor Material Systems: Molecular Beam Epitaxial Growth and Characterization

Date: December 2013
Creator: Elmarhoumi, Nader M.
Description: Semi-conductor industry relies heavily on silicon (Si). However, Si is not a direct-band gap semi-conductor. Consequently, Si does not possess great versatility for multi-functional applications in comparison with the direct band-gap III-V semi-conductors such as GaAs. To bridge this gap, what is ideally required is a semi-conductor material system that is based on silicon, but has significantly greater versatility. While sparsely studied, the semi-conducting silicides material systems offer great potential. Thus, I focused on the growth and structural characterization of ruthenium silicide and osmium silicide material systems. I also characterized iron silicon germanide films using extended x-ray absorption fine structure (EXAFS) to reveal phase, semi-conducting behavior, and to calculate nearest neighbor distances. The choice of these silicides material systems was due to their theoretically predicted and/or experimentally reported direct band gaps. However, the challenge was the existence of more than one stable phase/stoichiometric ratio of these materials. In order to possess the greatest control over the growth process, molecular beam epitaxy (MBE) has been employed. Structural and film quality comparisons of as-grown versus annealed films of ruthenium silicide are presented. Structural characterization and film quality of MBE grown ruthenium silicide and osmium silicide films via in situ and ex situ ...
Contributing Partner: UNT Libraries
Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Gryczynski, Karol Grzegorz
Description: The modification of the band edge or emission energy of semiconductor quantum well light emitters due to image charge induced phenomenon is an emerging field of study. This effect observed in quantum well light emitters is critical for all metal-optics based light emitters including plasmonics, or nanometallic electrode based light emitters. This dissertation presents, for the first time, a systematic study of the image charge effect on semiconductor–metal systems. the necessity of introducing the image charge interactions is demonstrated by experiments and mathematical methods for semiconductor-metal image charge interactions are introduced and developed.
Contributing Partner: UNT Libraries
A Non-equilibrium Approach to Scale Free Networks

A Non-equilibrium Approach to Scale Free Networks

Date: August 2012
Creator: Hollingshad, Nicholas W.
Description: Many processes and systems in nature and society can be characterized as large numbers of discrete elements that are (usually non-uniformly) interrelated. These networks were long thought to be random, but in the late 1990s, Barabási and Albert found that an underlying structure did in fact exist in many natural and technological networks that are now referred to as scale free. Since then, researchers have gained a much deeper understanding of this particular form of complexity, largely by combining graph theory, statistical physics, and advances in computing technology. This dissertation focuses on out-of-equilibrium dynamic processes as they unfold on these complex networks. Diffusion in networks of non-interacting nodes is shown to be temporally complex, while equilibrium is represented by a stable state with Poissonian fluctuations. Scale free networks achieve equilibrium very quickly compared to regular networks, and the most efficient are those with the lowest inverse power law exponent. Temporally complex diffusion also occurs in networks with interacting nodes under a cooperative decision-making model. At a critical value of the cooperation parameter, the most efficient scale free network achieves consensus almost as quickly as the equivalent all-to-all network. This finding suggests that the ubiquity of scale free networks in nature ...
Contributing Partner: UNT Libraries
Modification of Graphene Properties: Electron Induced Reversible Hydrogenation, Oxidative Etching and Layer-by-layer Thinning

Modification of Graphene Properties: Electron Induced Reversible Hydrogenation, Oxidative Etching and Layer-by-layer Thinning

Date: May 2012
Creator: Jones, Jason David
Description: In this dissertation, I present the mechanism of graphene hydrogenation via three different electron sources: scanning electron microscopy, e-beam irradiation and H2 and He plasma irradiation. in each case, hydrogenation occurs due to electron impact fragmentation of adsorbed water vapor from the sample preparation process. in the proposed model, secondary and backscattered electrons generated from incident electron interactions with the underlying silicon substrate are responsible for the dissociation of water vapor. Chemisorbed H species from the dissociation are responsible for converting graphene into hydrogenated graphene, graphane. These results may lead to higher quality graphane films having a larger band gap than currently reported. in addition, the dissertation presents a novel and scalable method of controllably removing single atomic planes from multi-layer graphene using electron irradiation from an intense He plasma under a positive sample bias. As the electronic properties or multi-layer graphene are highly dependent on the number of layers, n, reducing n in certain regions has many benefits. for example, a mask in conjunction with this thinning method could be used for device applications.
Contributing Partner: UNT Libraries
Highly Efficient Single Frequency Blue Laser Generation by Second Harmonic Generation of Infrared Lasers Using Quasi Phase Matching in Periodically Poled Ferroelectric Crystals

Highly Efficient Single Frequency Blue Laser Generation by Second Harmonic Generation of Infrared Lasers Using Quasi Phase Matching in Periodically Poled Ferroelectric Crystals

Date: August 2014
Creator: Khademian, Ali
Description: Performance and reliability of solid state laser diodes in the IR region exceeds those in the visible and UV part of the light spectrum. Single frequency visible and UV laser diodes with higher than 500 mW power are not available commercially. However we successfully stabilized a multi-longitudinal mode IR laser to 860 mW single frequency. This means high efficiency harmonic generation using this laser can produce visible and UV laser light not available otherwise. In this study we examined three major leading nonlinear crystals: PPMgO:SLN, PPKTP and PPMgO:SLT to generate blue light by second harmonic generation. We achieved record high net conversion efficiencies 81.3% using PPMgO:SLT (~500 mW out), and 81.1% using PPKTP (~700 mW out). In both these cases an external resonance buildup cavity was used. We also studied a less complicated single pass waveguide configuration (guided waist size of ~ 5 um compared to ~60 um) to generate blue. With PPMgO:SLN we obtained net 40.4% and using PPKT net 6.8% (110mW and 10.1 mW respectively).
Contributing Partner: UNT Libraries
A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation

A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation

Date: May 2013
Creator: Kummari, Venkata Chandra Sekhar
Description: SiC has become an attractive wide bandgap semiconductor due to its unique physical and electronic properties and is widely used in high temperature, high frequency, high power and radiation resistant applications. SiC has been used as an alternative to Si in harsh environments such as in the oil industry, nuclear power systems, aeronautical, and space applications. SiC is also known for its polytypism and among them 3C-SiC, 4H-SiC and 6H-SiC are the most common polytypes used for research purposes. Among these polytypes 4H-SiC is gaining importance due to its easy commercial availability with a large bandgap of 3.26 eV at room temperature. Controlled creation of defects in materials is an approach to modify the electronic properties in a way that new functionality may result. SiC is a promising candidate for defect-induced magnetism on which spintronic devices could be developed. The defects considered are of room temperature stable vacancy types, eliminating the need for magnetic impurities, which easily diffuse at room temperature. Impurity free vacancy type defects can be created by implanting the host atoms of silicon or carbon. The implantation fluence determines the defect density, which is a critical parameter for defect induced magnetism. Therefore, we have studied the influence ...
Contributing Partner: UNT Libraries
Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production

Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production

Date: May 2016
Creator: Lane, Ryan Andrew
Description: Comparisons between measurements of the ground-state hyperfine structure and gravitational acceleration of hydrogen and antihydrogen could provide a test of fundamental physical theories such as CPT (charge conjugation, parity, time-reversal) and gravitational symmetries. Currently, antihydrogen traps are based on Malmberg-Penning traps. The number of antiprotons in Malmberg-Penning traps with sufficiently low energy to be suitable for trappable antihydrogen production may be reduced by the electrostatic space charge of the positrons and/or collisions among antiprotons. Alternative trap designs may be needed for future antihydrogen experiments. A computational tool is developed to simulate charged particle motion in customizable magnetic fields generated by combinations of current loops and current lines. The tool is used to examine charged particle confinement in two systems consisting of dual, levitated current loops. The loops are coaxial and arranged to produce a magnetic null curve. Conditions leading to confinement in the system are quantified and confinement modes near the null curve and encircling one or both loops are identified. Furthermore, the tool is used to examine and quantify charged particle motion parallel to the null curve in the large radius limit of the dual, levitated current loops. An alternative to new trap designs is to identify the effects ...
Contributing Partner: UNT Libraries
Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology

Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology

Date: August 2011
Creator: Lee, Kyung-Min
Description: In a sub-wavelength scale, even approaching to the atomic scale, nanoscale physics shows various novel phenomena. Since it has been named, nanoscience and nanotechnology has been employed to explore and exploit this small scale world. For example, with various functionalized features, nanowire (NW) has been making its leading position in the researches of physics, chemistry, biology, and engineering as a miniaturized building block. Its individual characteristic shows superior and unique features compared with its bulk counterpart. As one part of these research efforts and progresses, and with a part of the fulfillment of degree study, novel methodologies and device structures in nanoscale were devised and developed to show the abilities of high performing thermoelectrical, biological, and optical applications. A single β-SiC NW was characterized for its thermoelectric properties (thermal conductivity, Seebeck coefficient, and figure of merit) to compare with its bulk counterpart. The combined structure of Ag NW and ND was made to exhibit its ability of clear imaging of a fluorescent cell. And a plasmonic nanosture of silver (Ag) nanodot array and a β-SiC NW was fabricated to show a high efficient light harvesting device that allows us to make a better efficient solar cell. Novel nanomanipulation techniques were ...
Contributing Partner: UNT Libraries
Interaction of Plasmons and Excitons for Low-Dimension Semiconductors

Interaction of Plasmons and Excitons for Low-Dimension Semiconductors

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Lin, Jie (physicist)
Description: The effects of surface plasmon for InGaN/GaN multi-quantum wells and ZnO nanoparticles optical linear and nonlinear emission efficiency had been experimentally studied. Due to the critical design for InGaN MQWs with inverted hexagonal pits based on GaN, both contribution of surface plasmon effect and image charge effect at resonant and off resonant frequencies were experimentally and theoretically investigated. With off- resonant condition, the InGaN MQWs emission significantly enhanced by metal nanoparticles. This enhancement was caused by the image charge effect, due to the accumulation of carriers to NPs region. When InGaN emission resonated with metal particles SP modes, surface Plasmon effect dominated the emission process. We also studied the surface plasmon effect for ZnO nanoparticles nonlinear optical processes, SHG and TPE. Defect level emission had more contribution at high incident intensity. Emissions are different for pumping deep into the bulk and near surface. A new assumption to increase the TPE efficiency was studied. We thought by using Au nanorods localized surface plasmon mode to couple the ZnO virtual state, the virtual state’s life time would be longer and experimentally lead the emission enhancement. We studied the TPE phenomena at high and near band gap energy. Both emission intensity and decay ...
Contributing Partner: UNT Libraries
Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Date: May 2012
Creator: Llopis, Antonio
Description: III-V nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solid-state white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thin-films on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new non-resonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensity-dependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement ...
Contributing Partner: UNT Libraries
Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells

Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells

Date: August 2012
Creator: Mahat, Meg Bahadur
Description: Group III nitrides are efficient light emitters. The modification of internal optoelectronic properties of these materials due to strain, external or internal electric field are an area of interest. Insertion of metal nanoparticles (MNPs) (Ag, Au etc) inside the V-shaped inverted hexagonal pits (IHP) of InGaN/GaN quantum wells (QWs) offers the potential of improving the light emission efficiencies. We have observed redshift and blueshift due to the Au MNPs and Ag MNPs respectively. This shift could be due to the electric field created by the MNPs through electrostatic image charge. We have studied the ultrafast carrier dynamics of carriers in hybrid InGaN/GaN QWs. The change in quantum confinement stark effect due to MNPs plays an important role for slow and fast carrier dynamics. We have also observed the image charge effect on the ultrafast differential transmission measurement due to the MNPs. We have studied the non-linear absorption spectroscopy of these materials. The QWs behave as a discharging of a nanocapacitor for the screening of the piezoelectric field due to the photo-excited carriers. We have separated out screening and excitonic bleaching components from the main differential absorption spectra of InGaN/GaN QWs.
Contributing Partner: UNT Libraries
Complex Numbers in Quantum Theory

Complex Numbers in Quantum Theory

Date: August 2015
Creator: Maynard, Glenn
Description: In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with Ehrenfest, wrote the following about the new theory: “What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real function.” This seemingly simple issue remains unexplained almost ninety years later. In this dissertation I elucidate the physical and theoretical origins of the complex requirement. I identify a freedom/constraint situation encountered by vectors when, employed in accordance with adopted quantum representational methodology, and representing angular momentum states in particular. Complex vectors, quite simply, provide more available adjustable variables than do real vectors. The additional variables relax the constraint situation allowing the theory’s representational program to carry through. This complex number issue, which lies at the deepest foundations of the theory, has implications for important issues located higher in the theory. For example, any unification of the classical and quantum accounts of the settled order of nature, will rest squarely on our ability to account for the introduction of the imaginary unit.
Contributing Partner: UNT Libraries
The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene

The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene

Date: May 2014
Creator: Mo, Yudong
Description: In this dissertation, I present that at a vacuum of 3×10-7 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of growth of ZnO, GaN and ZnS is provided. In addition, Cs deposition on GaN nanostructures at ultra-high vacuum results in 30% decrease in turn-on voltage and 60% in work function. The improvement in FE properties could be due to a Cs-induced space-charge layer at the surface that reduces the barrier for FE and lowers the work function. I describe a new phenomenon, in which the resistivity of CVD-grown graphene increases to a higher saturated value under light exposure, and depends on the wavelength of the light—the shorter the wavelength, the higher the resistivity. First-principle calculations and theoretical analysis based on density functional theory show that (1) a water molecule close to ...
Contributing Partner: UNT Libraries
Analysis of Biological Materials Using a Nuclear Microprobe

Analysis of Biological Materials Using a Nuclear Microprobe

Date: December 2014
Creator: Mulware, Stephen Juma
Description: The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe (III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world’s agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices) for the ...
Contributing Partner: UNT Libraries
Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Date: May 2012
Creator: Nagaraj, Nagaraj
Description: With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an efort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. a dielectric-metal-¬dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. an equation for propagation length is derived in a wide range of frequencies. ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST