This system will be undergoing maintenance Tuesday, May 5, 2015 from 10:00 AM to 11:00 AM CDT.

  You limited your search to:

  Partner: UNT Libraries
 Decade: 2010-2019
 Degree Discipline: Computer Science
 Collection: UNT Theses and Dissertations
3D Reconstruction Using Lidar and Visual Images

3D Reconstruction Using Lidar and Visual Images

Date: December 2012
Creator: Duraisamy, Prakash
Description: In this research, multi-perspective image registration using LiDAR and visual images was considered. 2D-3D image registration is a difficult task because it requires the extraction of different semantic features from each modality. This problem is solved in three parts. The first step involves detection and extraction of common features from each of the data sets. The second step consists of associating the common features between two different modalities. Traditional methods use lines or orthogonal corners as common features. The third step consists of building the projection matrix. Many existing methods use global positing system (GPS) or inertial navigation system (INS) for an initial estimate of the camera pose. However, the approach discussed herein does not use GPS, INS, or any such devices for initial estimate; hence the model can be used in places like the lunar surface or Mars where GPS or INS are not available. A variation of the method is also described, which does not require strong features from both images but rather uses intensity gradients in the image. This can be useful when one image does not have strong features (such as lines) or there are too many extraneous features.
Contributing Partner: UNT Libraries
3GPP Long Term Evolution LTE Scheduling

3GPP Long Term Evolution LTE Scheduling

Date: December 2013
Creator: Alotaibi, Sultan
Description: Future generation cellular networks are expected to deliver an omnipresent broadband access network for an endlessly increasing number of subscribers. Long term Evolution (LTE) represents a significant milestone towards wireless networks known as 4G cellular networks. A key feature of LTE is the implementation of enhanced Radio Resource Management (RRM) mechanism to improve the system performance. The structure of LTE networks was simplified by diminishing the number of the nodes of the core network. Also, the design of the radio protocol architecture is quite unique. In order to achieve high data rate in LTE, 3rd Generation Partnership Project (3GPP) has selected Orthogonal Frequency Division Multiplexing (OFDM) as an appropriate scheme in terms of downlinks. However, the proper scheme for an uplink is the Single-Carrier Frequency Domain Multiple Access due to the peak-to-average-power-ratio (PAPR) constraint. LTE packet scheduling plays a primary role as part of RRM to improve the system’s data rate as well as supporting various QoS requirements of mobile services. The major function of the LTE packet scheduler is to assign Physical Resource Blocks (PRBs) to mobile User Equipment (UE). In our work, we formed a proposed packet scheduler algorithm. The proposed scheduler algorithm acts based on the number ...
Contributing Partner: UNT Libraries
Anchor Nodes Placement for Effective Passive Localization

Anchor Nodes Placement for Effective Passive Localization

Access: Use of this item is restricted to the UNT Community.
Date: August 2010
Creator: Pasupathy, Karthikeyan
Description: Wireless sensor networks are composed of sensor nodes, which can monitor an environment and observe events of interest. These networks are applied in various fields including but not limited to environmental, industrial and habitat monitoring. In many applications, the exact location of the sensor nodes is unknown after deployment. Localization is a process used to find sensor node's positional coordinates, which is vital information. The localization is generally assisted by anchor nodes that are also sensor nodes but with known locations. Anchor nodes generally are expensive and need to be optimally placed for effective localization. Passive localization is one of the localization techniques where the sensor nodes silently listen to the global events like thunder sounds, seismic waves, lighting, etc. According to previous studies, the ideal location to place anchor nodes was on the perimeter of the sensor network. This may not be the case in passive localization, since the function of anchor nodes here is different than the anchor nodes used in other localization systems. I do extensive studies on positioning anchor nodes for effective localization. Several simulations are run in dense and sparse networks for proper positioning of anchor nodes. I show that, for effective passive localization, the ...
Contributing Partner: UNT Libraries
Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers

Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers

Date: December 2011
Creator: Haraburda, David
Description: Two applications of a binary tree data type based on a simple pairing function (a bijection between natural numbers and pairs of natural numbers) are explored. First, the tree is used to encode natural numbers, and algorithms that perform basic arithmetic computations are presented along with formal proofs of their correctness. Second, using this "canonical" representation as a base type, algorithms for encoding and decoding additional isomorphic data types of other mathematical constructs (sets, sequences, etc.) are also developed. An experimental application to a memory management system is constructed and explored using these isomorphic types. A practical analysis of this system's runtime complexity and space savings are provided, along with a proof of concept framework for both applications of the binary tree type, in the Java programming language.
Contributing Partner: UNT Libraries
Automated Classification of Emotions Using Song Lyrics

Automated Classification of Emotions Using Song Lyrics

Date: December 2012
Creator: Schellenberg, Rajitha
Description: This thesis explores the classification of emotions in song lyrics, using automatic approaches applied to a novel corpus of 100 popular songs. I use crowd sourcing via Amazon Mechanical Turk to collect line-level emotions annotations for this collection of song lyrics. I then build classifiers that rely on textual features to automatically identify the presence of one or more of the following six Ekman emotions: anger, disgust, fear, joy, sadness and surprise. I compare different classification systems and evaluate the performance of the automatic systems against the manual annotations. I also introduce a system that uses data collected from the social network Twitter. I use the Twitter API to collect a large corpus of tweets manually labeled by their authors for one of the six emotions of interest. I then compare the classification of emotions obtained when training on data automatically collected from Twitter versus data obtained through crowd sourced annotations.
Contributing Partner: UNT Libraries
Automatic Tagging of Communication Data

Automatic Tagging of Communication Data

Date: August 2012
Creator: Hoyt, Matthew Ray
Description: Globally distributed software teams are widespread throughout industry. But finding reliable methods that can properly assess a team's activities is a real challenge. Methods such as surveys and manual coding of activities are too time consuming and are often unreliable. Recent advances in information retrieval and linguistics, however, suggest that automated and/or semi-automated text classification algorithms could be an effective way of finding differences in the communication patterns among individuals and groups. Communication among group members is frequent and generates a significant amount of data. Thus having a web-based tool that can automatically analyze the communication patterns among global software teams could lead to a better understanding of group performance. The goal of this thesis, therefore, is to compare automatic and semi-automatic measures of communication and evaluate their effectiveness in classifying different types of group activities that occur within a global software development project. In order to achieve this goal, we developed a web-based component that can be used to help clean and classify communication activities. The component was then used to compare different automated text classification techniques on various group activities to determine their effectiveness in correctly classifying data from a global software development team project.
Contributing Partner: UNT Libraries
Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Date: May 2014
Creator: Guan, Qiang
Description: The increasingly popular cloud-computing paradigm provides on-demand access to computing and storage with the appearance of unlimited resources. Users are given access to a variety of data and software utilities to manage their work. Users rent virtual resources and pay for only what they use. In spite of the many benefits that cloud computing promises, the lack of dependability in shared virtualized infrastructures is a major obstacle for its wider adoption, especially for mission-critical applications. Virtualization and multi-tenancy increase system complexity and dynamicity. They introduce new sources of failure degrading the dependability of cloud computing systems. To assure cloud dependability, in my dissertation research, I develop autonomic failure identification and diagnosis techniques that are crucial for understanding emergent, cloud-wide phenomena and self-managing resource burdens for cloud availability and productivity enhancement. We study the runtime cloud performance data collected from a cloud test-bed and by using traces from production cloud systems. We define cloud signatures including those metrics that are most relevant to failure instances. We exploit profiled cloud performance data in both time and frequency domain to identify anomalous cloud behaviors and leverage cloud metric subspace analysis to automate the diagnosis of observed failures. We implement a prototype of the ...
Contributing Partner: UNT Libraries
Boosting for Learning From Imbalanced, Multiclass Data Sets

Boosting for Learning From Imbalanced, Multiclass Data Sets

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Abouelenien, Mohamed
Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared ...
Contributing Partner: UNT Libraries
Cuff-less Blood Pressure Measurement Using a Smart Phone

Cuff-less Blood Pressure Measurement Using a Smart Phone

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Jonnada, Srikanth
Description: Blood pressure is vital sign information that physicians often need as preliminary data for immediate intervention during emergency situations or for regular monitoring of people with cardiovascular diseases. Despite the availability of portable blood pressure meters in the market, they are not regularly carried by people, creating a need for an ultra-portable measurement platform or device that can be easily carried and used at all times. One such device is the smartphone which, according to comScore survey is used by 26.2% of the US adult population. the mass production of these phones with built-in sensors and high computation power has created numerous possibilities for application development in different domains including biomedical. Motivated by this capability and their extensive usage, this thesis focuses on developing a blood pressure measurement platform on smartphones. Specifically, I developed a blood pressure measurement system on a smart phone using the built-in camera and a customized external microphone. the system consists of first obtaining heart beats using the microphone and finger pulse with the camera, and finally calculating the blood pressure using the recorded data. I developed techniques for finding the best location for obtaining the data, making the system usable by all categories of people. ...
Contributing Partner: UNT Libraries
Ddos Defense Against Botnets in the Mobile Cloud

Ddos Defense Against Botnets in the Mobile Cloud

Date: May 2014
Creator: Jensen, David
Description: Mobile phone advancements and ubiquitous internet connectivity are resulting in ever expanding possibilities in the application of smart phones. Users of mobile phones are now capable of hosting server applications from their personal devices. Whether providing services individually or in an ad hoc network setting the devices are currently not configured for defending against distributed denial of service (DDoS) attacks. These attacks, often launched from a botnet, have existed in the space of personal computing for decades but recently have begun showing up on mobile devices. Research is done first into the required steps to develop a potential botnet on the Android platform. This includes testing for the amount of malicious traffic an Android phone would be capable of generating for a DDoS attack. On the other end of the spectrum is the need of mobile devices running networked applications to develop security against DDoS attacks. For this mobile, phones are setup, with web servers running Apache to simulate users running internet connected applications for either local ad hoc networks or serving to the internet. Testing is done for the viability of using commonly available modules developed for Apache and intended for servers as well as finding baseline capabilities of ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST