You limited your search to:

  Partner: UNT Libraries
 Department: Department of Chemistry
 Decade: 2010-2019
 Collection: UNT Theses and Dissertations
Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation

Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation

Access: Use of this item is restricted to the UNT Community.
Date: August 2013
Creator: Fogueri, Uma
Description: In this work we address two problems in computational chemistry relevant to biomolecular modeling. In the first project, we consider the conformer space of melatonin as a a representative example of “real-life” flexible biomolecules. Geometries for all 52 unique conformers are optimized using spin-component scaled MP2, and then relative energies are obtained at the CCSD (T) level near the complete basis set limit. These are then used to validate a variety of DFT methods with and without empirical dispersion corrections, as well as some lower-level ab initio methods. Basis set convergence is found to be relatively slow due to internal C-H…O and C-H…N contacts. Absent dispersion corrections, many DFT functionals will transpose the two lowest conformers. Dispersion corrections resolve the problem for most functionals. Double hybrids yield particularly good performance, as does MP2.5. In the second project, we propose a simple DFT-based diagnostic for nondynamical correlation effects. Aλ= (1-TAE [ΧλC]/TAE[XC])/λ where TAE is the total atomization energy, XC the “pure” DFT exchange-correlation functional, and ΧλC the corresponding hybrid with 100λ% HF-type exchange. The diagnostic is a good predictor for sensitivity of energetics to the level of theory, unlike most of the wavefunction-based diagnostics. For GGA functionals, Aλ values approaching unity ...
Contributing Partner: UNT Libraries
Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells

Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells

Date: August 2014
Creator: Berhe, Seare Ahferom
Description: Organic dyes are examined in photoelectrochemical systems wherein they engage in thermal (rather than photoexcited) electron donation into metal oxide semiconductors. These studies are intended to elucidate fundamental parameters of electron transfer in photoelectrochemical cells. Development of novel methods for the structure/property tuning of electroactive dyes and the preparation of nanostructured semiconductors have also been discovered in the course of the presented work. Acceptor sensitized polymer oxide solar cell devices were assembled and the impact of the acceptor dyes were studied. The optoelectronic tuning of boron-chelated azadipyrromethene dyes has been explored by the substitution of carbon substituents in place of fluoride atoms at boron. Stability of singlet exited state and level of reduction potential of these series of aza-BODIPY coumpounds were studied in order to employ them as electron-accepting sensitizers in solid state dye sensitized solar cells.
Contributing Partner: UNT Libraries
Accuracy and Efficiency in Computational Chemistry: The Correlation Consistent Composite Approach

Accuracy and Efficiency in Computational Chemistry: The Correlation Consistent Composite Approach

Date: August 2011
Creator: Wilson, Brent R.
Description: One of the central concerns of computational chemistry is that of efficiency (i.e. the development of methodologies which will yield increased accuracy of prediction without requiring additional computational resources – RAM, disk space, computing time). Though the equations of quantum mechanics are known, the solutions to these equations often require a great deal of computing power. This dissertation primarily concerns the theme of improved computational efficiency (i.e. the achievement of greater accuracy with reduced computational cost). Improvements in the efficiency of computational chemistry are explored first in terms of the correlation consistent composite approach (ccCA). The ccCA methodology was modified and this enhanced ccCA methodology was tested against the diverse G3/05 set of 454 energetic properties. As computational efficiency improves, molecules of increasing size may be studied and this dissertation explored the issues (differential correlation and size extensivity effects) associated with obtaining chemically accurate (within 1 kcal mol-1) enthalpies of formation for hydrocarbon molecules of escalating size. Two applied projects are also described; these projects concerned the theoretical prediction of a novel rare gas compound, FKrOH, and the mechanism of human glutathione synthetase’s (hGS) negative cooperativity. The final work examined the prospect for the parameterization of the modified embedded atom ...
Contributing Partner: UNT Libraries
Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods

Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods

Date: August 2013
Creator: Laury, Marie L.
Description: Computational chemistry has led to the greater understanding of the molecular world, from the interaction of molecules, to the composition of molecular species and materials. Of the families of computational chemistry approaches available, the main families of electronic structure methods that are capable of accurate and/or reliable predictions of energetic, structural, and spectroscopic properties are ab initio methods and density functional theory (DFT). The focus of this dissertation is to improve the accuracy of predictions and computational efficiency (with respect to memory, disk space, and computer processing time) of some computational chemistry methods, which, in turn, can extend the size of molecule that can be addressed, and, for other methods, DFT, in particular, gain greater insight into which DFT methods are more reliable than others. Much, though not all, of the focus of this dissertation is upon transition metal species – species for which much less method development has been targeted or insight about method performance has been well established. The ab initio approach that has been targeted in this work is the correlation consistent composite approach (ccCA), which has proven to be a robust, ab initio computational method for main group and first row transition metal-containing molecules yielding, on ...
Contributing Partner: UNT Libraries
Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy

Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy

Date: August 2011
Creator: Dewberry, Christopher Thomas
Description: The efforts of my research have led to the successful construction of several instruments that have helped expand the field of microwave spectroscopy. The classic Balle-Flygare spectrometer has been modified to include two different sets of antenna to operate in the frequency ranges 6-18 GHz and 18-26 GHz, allowing it to function for a large range without having to break vacuum. This modified FTMW instrument houses two low noise amplifiers in the vacuum chamber to allow for the LNAs to be as close to the antenna as physically possible, improving sensitivity. A new innovative Balle-Flygare type spectrometer, the efficient low frequency FTMW, was conceived and built to operate at frequencies as low as 500 MHz through the use of highly curved mirrors. This is new for FTMW techniques that normally operate at 4 GHz or higher with only a few exceptions around 2 GHz. The chirped pulse FTMW spectrometer uses horn antennas to observe spectra that span 2 GHz versus the standard 1 MHz of a cavity technique. This instrument decreases the amount of time to obtain a large spectral region of relative correct intensity molecular transitions. A Nd:YAG laser ablation apparatus was attached to the classic Balle-Flygare and chirped ...
Contributing Partner: UNT Libraries
Affordances of Instrumentation in General Chemistry Laboratories

Affordances of Instrumentation in General Chemistry Laboratories

Date: August 2010
Creator: Sherman, Kristin Mary Daniels
Description: The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO™ system as a useful and accurate measuring tool for general chemistry labs. They see the probeware as easy to use, portable, and able to interact with computers. Students find that the PASCO™ probeware system is useful in their general chemistry labs, more advanced chemistry labs, and in other science classes, and can be used in a variety of labs done in general chemistry. Students learn the affordances of the probeware through the lab manual, the laboratory teaching assistant, by trial and error, and from each other. The use of probeware systems provides lab instructors the opportunity to focus on the concepts illustrated by experiments and the opportunity to spend time discussing the results. In order to teach effectively, the instructor must know the correct name of the components involved, how to assemble and disassemble it correctly, how to troubleshoot the software, and must be able to replace broken or missing components ...
Contributing Partner: UNT Libraries
Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

Date: August 2011
Creator: Zhou, Mi
Description: The growth of single and multilayer BN films on several substrates was investigated. A typical atomic layer deposition (ALD) process was demonstrated on Si(111) substrate with a growth rate of 1.1 Å/cycle which showed good agreement with the literature value and a near stoichiometric B/N ratio. Boron nitride films were also deposited by ALD on Cu poly crystal and Cu(111) single crystal substrates for the first time, and a growth rate of ~1ML/ALD cycle was obtained with a B/N ratio of ~2. The realization of a h-BN/Cu heterojunction was the first step towards a graphene/h-BN/Cu structure which has potential application in gateable interconnects.
Contributing Partner: UNT Libraries
Carbon Nanostructure Based Donor-acceptor Systems for Solar Energy Harvesting

Carbon Nanostructure Based Donor-acceptor Systems for Solar Energy Harvesting

Date: December 2013
Creator: Das, Sushanta Kumar
Description: Carbon nanostructure based functional hybrid molecules hold promise in solarenergy harvesting. Research presented in this dissertation systematically investigates building of various donor-acceptor nanohybrid systems utilizing enriched single walled carbon nanotube and graphene with redox and photoactive molecules such as fullerene, porphyrin, and phthalocyanine. Design, synthesis, and characterization of the donor-acceptor hybrid systems have been carefully performed via supramolecular binding strategies. Various spectroscopic studies have provided ample information in terms of establishment of the formation of donor-acceptor hybrids and their extent of interaction in solution and eventual rate of photoinduced electron and/or energy transfer. Electrochemical studies enabled construction of energy level diagram revealing energetic details of the possible different photochemical events supported by computational studies carried out to establish the HOMO-LUMO levels in the donor acceptor systems. Transient absorption studies confirmed formation of charge separated species in the donor-acceptor systems which have been supported by electron mediation experiments. Based on the photoelectrochemical studies, IPCE of 8% was reported for enriched SWCNT(7,6)-ZnP donor-acceptor systems. In summary, the present investigation on the various nanocarbon sensitized donor-acceptor hybrids substantiates tremendous prospect, that could very well become the next generation of materials in building efficient solar energy harvesting devices andphotocatalyst.
Contributing Partner: UNT Libraries
Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-specific Abraham Parameter Model

Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-specific Abraham Parameter Model

Date: December 2014
Creator: Stephens, Timothy W.
Description: Experimental data for the logarithm of the gas-to-ionic liquid partition coefficient (log K) have been compiled from the published literature for over 40 ionic liquids over a wide temperature range. Temperature independent correlations based on the Gibbs free energy equation utilizing known Abraham solvation model parameters have been derived for the prediction of log K for 12 ionic liquids to within a standard deviation of 0.114 log units over a temperature range of over 60 K. Temperature independent log K correlations have also been derived from correlations of molar enthalpies of solvation and molar entropies of solvation, each within standard deviations of 4.044 kJ mol-1 and 5.338 J mol-1 K-1, respectively. In addition, molar enthalpies of solvation and molar entropies of solvation can be predicted from the Abraham coefficients in the temperature independent log K correlations to within similar standard deviations. Temperature independent, ion specific coefficients have been determined for 26 cations and 15 anions for the prediction of log K over a temperature range of at least 60 K to within a standard deviation of 0.159 log units.
Contributing Partner: UNT Libraries
Characterization of Novel Solvents and Absorbents for Chemical Separations

Characterization of Novel Solvents and Absorbents for Chemical Separations

Date: May 2011
Creator: Grubbs, Laura Michelle Sprunger
Description: Predictive methods have been employed to characterize chemical separation mediums including solvents and absorbents. These studies included creating Abraham solvation parameter models for room-temperature ionic liquids (RTILs) utilizing novel ion-specific and group contribution methodologies, polydimethyl siloxane (PDMS) utilizing standard methodology, and the micelles cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) utilizing a combined experimental setup methodology with indicator variables. These predictive models allows for the characterization of both standard and new chemicals for use in chemical separations including gas chromatography (GC), solid phase microextraction (SPME), and micellar electrokinetic chromatography (MEKC). Gas-to-RTIL and water-to-RTIL predictive models were created with a standard deviation of 0.112 and 0.139 log units, respectively, for the ion-specific model and with a standard deviation of 0.155 and 0.177 log units, respectively, for the group contribution fragment method. Enthalpy of solvation for solutes dissolved into ionic liquids predictive models were created with ion-specific coefficients to within standard deviations of 1.7 kJ/mol. These models allow for the characterization of studied ionic liquids as well as prediction of solute-solvent properties of previously unstudied ionic liquids. Predictive models were created for the logarithm of solute's gas-to-fiber sorption and water-to-fiber sorption coefficient for polydimethyl siloxane for wet and dry conditions. These models ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST