Search Results

Algebraically Determined Semidirect Products
Let G be a Polish group. We say that G is an algebraically determined Polish group if given any Polish group L and any algebraic isomorphism from L to G, then the algebraic isomorphism is a topological isomorphism. We will prove a general theorem that gives useful sufficient conditions for a semidirect product of two Polish groups to be algebraically determined. This will smooth the way for the proofs for some special groups. For example, let H be a separable Hilbert space and let G be a subset of the unitary group U(H) acting transitively on the unit sphere. Assume that -I in G and G is a Polish topological group in some topology such that H x G to H, (x,U) to U(x) is continuous, then H x G is a Polish topological group. Hence H x G is an algebraically determined Polish group. In addition, we apply the above the above result on the unitary group U(A) of a separable irreducible C*-algebra A with identity acting transitively on the unit sphere in a separable Hilbert space H and proved that the natural semidirect product H x U(A) is an algebraically determined Polish group. A similar theorem is true for the natural semidirect product R^{n} x G(n), where G(n) = GL(n,R), or GL^{+}(n,R), or SL(n,R), or |SL(n,R)|={A in GL(n,R) : |det(A)|=1}. On the other hand, it is known that the Heisenberg group H_{3}(R) , (R, +), (R{0}, x), and GL^{+}(n,R) are not algebraically determined Polish groups.
Gibbs/Equilibrium Measures for Functions of Multidimensional Shifts with Countable Alphabets
Consider a multidimensional shift space with a countably infinite alphabet, which serves in mathematical physics as a classical lattice gas or lattice spin system. A new definition of a Gibbs measure is introduced for suitable real-valued functions of the configuration space, which play the physical role of specific internal energy. The variational principle is proved for a large class of functions, and then a more restrictive modulus of continuity condition is provided that guarantees a function's Gibbs measures to be a nonempty, weakly compact, convex set of measures that coincides with the set of measures obeying a form of the DLR equations (which has been adapted so as to be stated entirely in terms of specific internal energy instead of the Hamiltonians for an interaction potential). The variational equilibrium measures for a such a function are then characterized as the shift invariant Gibbs measures of finite entropy, and a condition is provided to determine if a function's Gibbs measures have infinite entropy or not. Moreover the spatially averaged limiting Gibbs measures, i.e. constructive equilibria, are shown to exist and their weakly closed convex hull is shown to coincide with the set of true variational equilibrium measures. It follows that the "pure thermodynamic phases", which correspond to the extreme points in the convex set of equilibrium measures, must be constructive equilibria. Finally, for an even smoother class of functions a method is presented to construct a compatible interaction potential and it is checked that the two different structures generate the same sets of Gibbs and equilibrium measures, respectively.
Mycielski-Regular Measures
Let μ be a Radon probability measure on M, the d-dimensional Real Euclidean space (where d is a positive integer), and f a measurable function. Let P be the space of sequences whose coordinates are elements in M. Then, for any point x in M, define a function ƒn on M and P that looks at the first n terms of an element of P and evaluates f at the first of those n terms that minimizes the distance to x in M. The measures for which such sequences converge in measure to f for almost every sequence are called Mycielski-regular. We show that the self-similar measure generated by a finite family of contracting similitudes and which up to a constant is the Hausdorff measure in its dimension on an invariant set C is Mycielski-regular.
Strong Choquet Topologies on the Closed Linear Subspaces of Banach Spaces
In the study of Banach spaces, the development of some key properties require studying topologies on the collection of closed convex subsets of the space. The subcollection of closed linear subspaces is studied under the relative slice topology, as well as a class of topologies similar thereto. It is shown that the collection of closed linear subspaces under the slice topology is homeomorphic to the collection of their respective intersections with the closed unit ball, under the natural mapping. It is further shown that this collection under any topology in the aforementioned class of similar topologies is a strong Choquet space. Finally, a collection of category results are developed since strong Choquet spaces are also Baire spaces.
Uniformly σ-Finite Disintegrations of Measures
A disintegration of measure is a common tool used in ergodic theory, probability, and descriptive set theory. The primary interest in this paper is in disintegrating σ-finite measures on standard Borel spaces into families of σ-finite measures. In 1984, Dorothy Maharam asked whether every such disintegration is uniformly σ-finite meaning that there exists a countable collection of Borel sets which simultaneously witnesses that every measure in the disintegration is σ-finite. Assuming Gödel’s axiom of constructability I provide answer Maharam's question by constructing a specific disintegration which is not uniformly σ-finite.
Back to Top of Screen